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Disclaimer 

 

We inform users that the PFIM Interface 4.0 is a tool developed by the 

Laboratory “Biostatistics-Investigation-Pharmacometrics” - UMR 1137 INSERM 

and University Paris Diderot, under R and GCC.  

 

PFIM Interface 4.0 is a library of functions. The functions are published 

after a scientific validation.  

 

However, it may be that only extracts are published.   

 

By using this library of functions, the user accepts all the conditions of 

use set forth hereinafter. 

 

 

Licence 

 
This program is free software: you can redistribute it and/or modify it under 

the terms of the GNU General Public License as published by the Free Software 

Foundation, either version 3 of the License, or (at your option) any later 

version. 

 

You should have received a copy of the GNU General Public License along with 

this program.  If not, see  

<http://www.gnu.org/licenses/>. 

 

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 

UNIVERSITE PARIS DIDEROT OR INSERM OR ITS CONTRIBUTORS BE LIABLE FOR ANY 

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGE. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted under the terms of the GNU General Public 

Licence and provided that the following conditions are met: 

 

1. Redistributions of source code must retain the above copyright notice, 

this list of conditions and the following disclaimer. 

 

2. Redistributions in binary form must reproduce the above copyright 

notice, this list of conditions and the following disclaimer in the 

documentation and/or other materials provided with the distribution. 

  

3. The end-user documentation included with the redistribution, if any, 

must include the following acknowledgment: "This product includes software 

developed by Université Paris Diderot and INSERM (http://www.biostat.fr)." 

Alternately, this acknowledgment may appear in the software itself, if and 

wherever such third-party acknowledgments normally appear. 

  

4. The names "PFIM" and “PFIM Interface 4.0” must not be used to endorse or 

promote products derived from this software without prior written 

permission. For written permission, please contact 

france.mentre@bichat.inserm.fr. 

  

http://www.gnu.org/licenses/
http://www.biostat.fr)/
mailto:france.mentre@bichat.inserm.fr


5. Products derived from this software may not be called "PFIM", nor may 

"PFIM" appear in their name, without prior written permission of the 

University Paris Diderot and INSERM.  

 

 

Copyright © PFIM Interface 4.0 – Giulia Lestini, Thu Thuy Nguyen, Cyrielle 

Dumont, Caroline Bazzoli, Sylvie Retout, Hervé Le Nagard, Emmanuelle 

Comets and France Mentré - Université Paris Diderot – INSERM. 
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1. Introduction 
 

Model based optimal design approaches are increasingly performed in 

population pharmacokinetic/pharmacodynamics (PKPD) [1], which consist in 

determining a balance between the number of subjects and the number of 

samples per subject, as well as the allocation of times and doses, 

according to experimental conditions. A good choice of design is crucial 

for an efficient estimation of model parameters, especially when the 

studies are conducted in patients where only a few samples can be taken per 

subject. These approaches rely on the Fisher information matrix (FIM) for 

nonlinear mixed effect models (NLMEM), available in several software tools 

[2] and are a good alternative to clinical trial simulation. They require a 

priori knowledge of the model and its parameters, which can usually be 

obtained from previous experiments. 

PFIM (www.pfim.biostat.fr), developed in our group since 2001 [3,4], is the 

first tool for design evaluation and optimisation that has been developed 

in R. Two versions are available: a R script version and a graphical user 

interface version. PFIM Interface 4.0 is an extension of the graphical user 

version PFIM Interface 3.1 and includes several new features based on the R 

script program of PFIM 4.0 [5]. 

 
In this new version, for population designs, optimisation can be performed 

with fixed parameters or fixed sampling times. The Fisher information 

matrix obtained after evaluation or optimisation can be saved in a file. 

Additional features for Bayesian designs are now available. The Bayesian 

Fisher information matrix has been implemented. Design for maximum a 

posteriori estimation of individual parameters can be evaluated or 

optimised and the predicted shrinkage is also reported [6]. A new way has 

been added to specify user-defined models through an R function. It is now 

possible to visualise the graphs of the model and the sensitivity functions 

without performing evaluation or optimisation.  

 
This documentation describes the methodology implemented in PFIM Interface 

4.0 in Section 2. Section 3 describes how to specify models, either by 

using the PKPD library or the user-defined model option. Sections 4 and 5 

explain how to install and use PFIM Interface 4.0. Section 6 present in 

detail an evaluation and an optimisation output of PFIM Interface 4.0. 

Lastly, Section 7 shows a list of available examples when downloading PFIM 

Interface 4.0. 

  

http://www.pfim.biostat.fr/
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2. Methodology 
 

 

2.1 Design 

 

The elementary design 𝜉𝑖 of individual i (𝑖 = 1,… , 𝑁) is defined by the number 

𝑛𝑖 of samples and their allocation in time (𝑡𝑖1, … , 𝑡𝑖𝑛𝑖).  
For N individuals, the population design is composed of the N elementary 

designs such as 𝛯 = {𝜉1, … , 𝜉𝑁}. Usually, population designs are composed of a 
limited number Q of groups of individuals with identical design 𝜉𝑞 within 

each group, performed in a number 𝑁𝑞 of individuals. The population design 

can thus be written as 𝛯 = {[𝜉1, 𝑁1]; … ; [𝜉𝑄 , 𝑁𝑄]}. 
Individual and Bayesian designs include only one elementary design. 

 

 

2.2 Nonlinear mixed effects models 

 

 

A nonlinear mixed effects model, or a population model, is defined as 

follows. The vector of observations 𝑌𝑖 for the individual i (𝑖 = 1,… , 𝑁) is 
defined as  

 

𝑌𝑖 = 𝑓(𝜃𝑖 , 𝜉𝑖) + ɛ𝑖, 
 

where the function f defines the nonlinear structural model, 𝜃𝑖 is the 

vector of the p-individual parameters for individual i, 𝜉𝑖 is the elementary 

design of individual i and ɛ𝑖 is the vector of residual error.  

The vector of individual parameters 𝜃𝑖 depends on μ, the p-vector of the 
fixed effects parameters and on bi, the p-vector of the random effects for 

individual i. The relation between 𝜃𝑖 and (μ,bi) can be additive for a 

normal distribution of parameters, that is 

 

𝜃𝑖 = 𝜇 + 𝑏𝑖, 
 

or exponential for a lognormal distribution of parameters so that 

 

𝜃𝑖 = 𝜇exp⁡(𝑏𝑖). 
 

It is assumed that 𝑏𝑖~𝑁(0,𝛺) with 𝛺 defined as a 𝑝𝑝 diagonal variance-
covariance matrix, for which, each diagonal element 𝜔𝑗, 𝑗 = 1,… , 𝑝, represents 

the inter-individual variability of the 𝑗𝑡ℎ component of the vector bi.  

It is also supposed that ɛ𝑖~𝑁(0, 𝛴𝑖), where 𝛴𝑖 is a 𝑛𝑖𝑛𝑖-diagonal matrix such 
that 

 

𝛴𝑖(𝜇, 𝑏𝑖 , 𝜎𝑖𝑛𝑡𝑒𝑟 , 𝜎𝑠𝑙𝑜𝑝𝑒 , 𝜉𝑖) = 𝑑𝑖𝑎𝑔(𝜎𝑖𝑛𝑡𝑒𝑟 + 𝜎𝑠𝑙𝑜𝑝𝑒𝑓(𝜃𝑖 , 𝜉𝑖))
2. 

 

The terms 𝜎𝑖𝑛𝑡𝑒𝑟 and 𝜎𝑠𝑙𝑜𝑝𝑒 are the additive and proportional parts of the 

error model, respectively. Conditionnally on the value of 𝑏𝑖, it is assumed 

that the ɛ𝑖 errors are independently distributed. 
 

In the case of K multiple responses, the vector of observations 𝑌𝑖 can then 
be composed of  K vectors for the different responses:  

 

𝑌𝑖 = [𝑦𝑖1
𝑇 , 𝑦𝑖2

𝑇 , … , 𝑦𝑖𝐾
𝑇 ]𝑇, 
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where 𝑦𝑖𝑘, 𝑘 = 1,… , 𝐾, is the vector of 𝑛𝑖𝑘 observations for the 𝑘
𝑡ℎ response. 

Each of these responses is associated with a known function fk, which can 

be grouped in a vector of multiple response model F, such as 

 

𝐹(𝜃𝑖 , 𝜉𝑖) = [𝑓1(𝜃𝑖 , 𝜉𝑖1)
𝑇 , 𝑓2(𝜃𝑖 , 𝜉𝑖2)

𝑇 , … , 𝑓𝐾(𝜃𝑖 , 𝜉𝑖𝐾)
𝑇]𝑇, 

 

where 𝜉𝑖 is composed of K sub-designs such that 𝜉𝑖 = (𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝐾). The sub-

design 𝜉𝑖𝑘 is then defined by (𝑡𝑖𝑘1, 𝑡𝑖𝑘2, … , 𝑡𝑖𝑘𝑛𝑖𝑘), with 𝑛𝑖𝑘 sampling times for the 

observations of the kth response, so that 𝑛𝑖 = ∑ 𝑛𝑖𝑘
𝐾
𝑘=1 . 

Each response can have its error model and ɛ𝑖 is then the vector composed of 

the K vectors of residual errors ɛ𝑖𝑘, 𝑘 = 1,… , 𝐾, associated with the K 

responses.  

 

 

 

 

2.3 Fisher information matrix 

 

 

2.3.1 Population Fisher information matrix 

 

The population Fisher information matrix  ,FM    for multiple response 

models, for an individual with an elementary design  , with the vector of 

population parameters  , is given as: 

 

 
( , ) ( , )1

,
( , ) ( , )2

F T

A E V C E V
M

C E V B E V

 
    

 
 

 

with E and V the approximated marginal expectation and the variance of the 

observations of the individual. The vector of population parameter   is 

defined by 𝛹𝑇 = (𝜇𝑇 , 𝜆𝑇) with 𝜇 the p-vector of the fixed effects and 𝜆 the 

vector of the variance terms. 𝑀𝐹 is given as a block matrix (more details 

are given in [7–9]) with:  

 

1 1 1( ( , )) 2 ( )     
 

   

T

ml

m l l m

E E V V
A E V V tr V V

   
 with m  and 1, ,l p  

 

1 1( ( , )) ( )  


 
ml

m l

V V
B E V tr V V

 
  with m  and  1, ,diml    

 

1 1( ( , )) ( )  


 
ml

l m

V V
C E V tr V V

 
 with  1, ,diml   and 1, ,m p  

 

 

If the dependence of V in 𝜇 is neglected so that 0
V







, the population 

Fisher information matrix is a block diagonal matrix that is to say the 

block C of the matrix is supposed to be 0. Also, the block A is simplified 

and expressed as:  

 

1( ( , )) 2  


 

T

ml

m l

E E
A E V V

 
 with m  and 1, ,l p  
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Since PFIM Interface 3.1, the user can choose to compute either a full or a 

block diagonal matrix for population designs. However, based on 

publications showing the better performance of the block diagonal 

expression compared to the full one with linearisation [2], the default 

option in PFIM is the block diagonal information matrix.  

 

 

Prediction of standard errors 

 

According to the inequality of Cramer-Rao, the inverse of MF is the lower 

bound of the variance-covariance matrix of any unbiased estimate of the 

parameters. From the square roots of the diagonal elements of the inverse 

of MF, the predicted standard errors (SE) for estimated parameters can be 

calculated. 

  

 

2.3.2 Bayesian Fisher information matrix 

 

New feature: The new version 4.0 of PFIM Interface enables design 

evaluation and optimisation for maximum a posteriori estimation of 

individual parameters based on the Bayesian Fisher information matrix [6]. 

 

We are interested in the precision estimation of individual parameters for 

a subject i, associated to the vector of observation y (index i being 

omitted). These individual parameters can be estimated by maximum a 

posteriori (MAP). As 𝜇 is known, estimating 𝜃 is similar to estimating 𝜂. 

More precisely, the MAP estimate of 𝜂 is given by   

    )(log) |(log argmax
)(

)() |(
 argmax))y |(( argmaxˆ 


 pyp

yp

pyp
p 








  

where p is the probability density. The Bayesian Fisher information matrix, 

taking into account the a priori distribution of the random effects, is 

expressed as 

     

  1

22

 |

2

)),,((

)(log) |(log)y |(log
)(











































































gME

p
E

yp
EE

p
EM

IF

TTyTBF  

where
 















TyIF

yp
EM






) |(log
),(

2

, expression of the individual Fisher 

information matrix in classical nonlinear regression models. The 

expectation  )),,((  gME
IF

 can be obtained by first order approximation 

of the model around the expectation of random effects (i.e., 0).  

The shrinkage (Sh) is quantified from the ratio of the estimation variance 

predicted by MBF
-1 and the a priori variance, and can be calculated as the 

diagonal elements of the matrix 11
)()(

  
BF

MWI   (see [6] for more 

details). 

 

When a parameter has an a priori variance equal to 0, it will be 

considered as fixed to the mean value and no predicted shrinkage will be 

computed.   
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2.4 Design evaluation 

 

Population, individual and Bayesian design evaluation is based on the 

computation of the population, individual and Bayesian Fisher information 

matrix, respectively. During this process, the expected standard errors on 

the population or individual parameters with the design are evaluated. The 

user can choose to fix one or several parameters in the model that will not 

be computed in the Fisher information matrix. 

Eigenvalues and conditional number are given by default. When considering 

design for Bayesian estimation of individual parameters, the shrinkages are 

also reported.  

The computed Fisher information matrix can be saved in a file if requested.  

 

 

 

2.5 Design optimisation 

 

PFIM Interface 4.0 allows to optimise exact or a statistical designs. In 

the case of an exact optimisation, the group structure of the design is 

fixed: the number of elementary designs, the number of samples per 

elementary design and the number of subjects per elementary design are 

given and the design variables to optimise are only the sampling times. In 

the case of statistical optimisation, the sampling times (number and 

allocation) and the proportions of subjects in each elementary design are 

optimised. 

PFIM Interface 4.0 optimises population design using the D-optimal 

criterion, i.e. maximising the determinant of the population Fisher 

information matrix, or, similarly, minimising its inverse.  

 

The Fedorov-Wynn algorithm and the Simplex algorithm are available to 

design optimisation. Compared to the Simplex algorithm, the Fedorov-Wynn 

algorithm better affords high design variables optimisation. Moreover, it 

considers only pre-specified sampling times, avoiding, clinically 

unfeasible sampling times. The drawback is the huge number of elementary 

designs to be created (with corresponding huge number of Fisher information 

matrices to compute) when the set of allowed sampling times is very large. 

 

2.5.1 Simplex algorithm 

 

The Simplex algorithm optimises statistical or exact designs in constrained 

intervals, given a total number of samples.  

An initial population design needs to be supplied to start the 

optimisation. The maximum number of elementary designs and the number of 

sampling times per elementary design are fixed, the sampling times and the 

proportions of subjects in each elementary design are then optimised. From 

this initial design, initial vertices for the simplex algorithm are 

derived, reducing successively each component by 20% (a default value which 

can be changed) from the original component. 

PFIM Interface 4.0 uses the Splus function “fun.amoeba” from Daniel Heitjan 

(revised 12/94), which is a translation from the Numerical Recipes for 

Nelder and Mead Simplex function [10].  

 

 

2.5.2 Fedorov-Wynn algorithm 

 

The Fedorov-Wynn algorithm is specifically dedicated to design optimisation 

problems and has the property to converge towards the D-optimal design [11–
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13]. It optimises statistical designs for a given total number of samples. 

The sampling times are chosen among a given finite set of times. Minimum 

and maximum numbers of samples per subject are specified.  

To start the algorithm, an initial population design is then required. 

The Fedorov-Wynn algorithm is programmed in a C code and is linked to PFIM 

Interface 4.0 through a dynamic library, called libFED.dll and libFED64.dll 

for R 32-bit and 64-bit respectively. Moreover, PFIM Interface uses the 

function combn in the R package “combinat”.  

 

New feature: The best one group protocol, which maximises the determinant 

of the elementary Fisher information matrix of all elementary protocols 

chosen among the predefined set of samples, is given by default when 

running Fedorov-Wynn algorithm (before calling the dynamic library). This 

is the optimal protocol for individual design and Bayesian design. 

Moreover, in PFIM Interface 4.0, optimisation with Fedorov-Wynn algorithm 

can be performed assuming that some sampling times are fixed. 
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3. Models 

 
Models in PFIM Interface 4.0 can be specified either through their 

analytical form or as a solution of system of differential equations. PFIM 

Interface provides libraries of models (see Section 3.1), and users may 

also define their own model analytically or using a system of differential 

equations (see Section 3.2).  

 

The PFIM Interface 4.0 library implements R expressions or differential 

equation systems for PKPD models. The PK model library includes one, two 

and three compartment models with linear elimination and with Michaelis-

Menten elimination. The PD model library supports immediate response models 

(alone or linked to a pharmacokinetic model) and the turnover response 

models (linked to pharmacokinetic model). These libraries have been derived 

from the PKPD library developed by Bertrand and Mentré for the MONOLIX 

software, and all analytical expressions are in that document [14]. A 

documentation of PKPD models for PFIM Interface is available when 

downloading PFIM Interface 4.0. Presently, there is no model with lag time 

in the library.  

 

New feature: In the previous versions of PFIM Interface, a user-defined 

model given in analytical form needed to be specified through an R 

expression. An alternative way to write the model is now available, through 

an R function with a specific format (see section 3.2.3).  

 

3.1 Library of models 

3.1.1 Library of pharmacokinetic models 

Two types of PK models can be used in PFIM Interface 4.0, PK models with a 

first order linear elimination or PK models with a Michaelis-Menten 

elimination. The PK models with a linear elimination are written using an 

analytical form through an R expression whereas the PK models with a 

Michaelis-Menten elimination are written using a differential equation 

system.  

 

The following sections show the list of models for each type of PK model in 

separate tables. These tables display all the information in order to use 

the model function chosen.  The model is described by: 

- a name 

- the type of input 

- the type of elimination 

- the number of compartments 

- the parameters used (parameterisation) 

- the type of administration (sd : single dose, md: multiple dose, 

ss: steady state) depending on administration type, additional 

variables may be required. They are specified in the arguments (N: 

number of doses, tau: interval between two doses, TInf: duration 

of the infusion, dose: dose) 

 

For models with infusion, the user has to specify the duration of infusion 

(TInf) in the needed variables. The rate of infusion is computed 

automatically in the function model by the expression: dose/TInf. The dose 

has to be specified in the tab design (see section 5.4). 

 

For example, if one uses after a multiple dose administration, the first 

order oral absorption with one compartment model (oral1_1cpt_kaVCl_md) from 

the library which has three parameters (ka, Cl and V) and two needed 
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variables (N, tau), the number of doses (N) and the interval between two 

doses (tau) have to be specified. 

 

 

Pharmacokinetic models with a linear elimination 

 

The library of PK models with linear elimination is composed of one, two 

and three compartment models for the three types of input (bolus, infusion 

and first order oral absorption) and the three types of administration 

(single dose, multiple dose, steady state).  

 

The list of these PK models is given in Table 1. 
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Table 1. Pharmacokinetic models with first order linear elimination included in the library of models 

 

Name Input Cpt Elimination Parameterisation Administration Arguments 

bolus_1cpt_Vk IV-bolus 1 1st order V, k 

sd - 

md N, tau 

ss tau 

bolus_1cpt_VCl IV-bolus 1 1st order V, Cl 

sd - 

md N, tau 

ss tau 

infusion_1cpt_Vk IV-infusion 1 1st order V, k 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

infusion_1cpt_VCl IV-infusion 1 1st order V, Cl 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_1cpt_kaVk 1st order 1 1st order ka, V, k 

sd - 

md N, tau 

ss tau 

oral1_1cpt_kaVCl 1st order 1 1st order ka, V, Cl 

sd - 

md N, tau 

ss tau 

bolus_2cpt_Vkk12k21 IV-bolus 2 1st order V, k, k12, k21 

sd - 

md N, tau 

ss tau 

bolus_2cpt_ClV1QV2 IV-bolus 2 1st order Cl, V1, Q, V2 

sd - 

md N, tau 

ss tau 

infusion_2cpt_Vkk12k21 IV-infusion 2 1st order V, k, k12, k21 

sd TInf 

md TInf, N, tau 

ss TInf, tau 
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infusion_2cpt_ClV1QV2 IV-infusion 2 1st order Cl, V1, Q, V2 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_2cpt_kaVkk12k21 1st order 2 1st order ka, V, k, k12, k21 

sd - 

md N, tau 

ss tau 

oral1_2cpt_kaClV1QV2 1st order 2 1st order ka, Cl, V1, Q, V2 

sd - 

md N, tau 

ss tau 

bolus_3cpt_Vkk12k21k13k31 IV-bolus 3 1st order V, k, k12, k21, k13, k31 

sd - 

md N, tau 

ss tau 

bolus_3cpt_ClV1Q1V2Q2V3 IV-bolus 3 1st order Cl, V1, Q1, V2, Q2, V3 

sd - 

md N, tau 

ss tau 

infusion_3cpt_Vkk12k21k13k31 IV-infusion 3 1st order V, k, k12, k21, k13, k31 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

infusion_3cpt_ClV1Q1V2Q2V3 IV-infusion 3 1st order Cl, V1, Q1, V2, Q2, V3 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_3cpt_kaVkk12k21k13k31 1st order 3 1st order ka, V, k, k12, k21, k13, k31 

sd - 

md N, tau 

ss tau 

oral1_3cpt_kaClV1Q1V2Q2V3 1st order 3 1st order ka, Cl, V1, Q1, V2, Q2, V3 

sd - 

md N, tau 

ss tau 
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Pharmacokinetic models with a Michaelis-Menten elimination 

 

One, two and three compartment models are implemented for the three types 

of input. For bolus input, only single dose models are implemented. For 

infusion and first order absorption input, single dose and multiple dose 

are implemented. There is no steady-state form for PK models with 

Michaelis-Menten elimination (in this case the user can use a multiple dose 

model with enough doses to reach SS). The list of these PK models is given 

in Table 2. 

For models with a bolus input, the dose has to be specified in the tab of 

the ODE variables (see section 5.3) as the initial condition of the 

differential equation system. For models with infusion or first order 

absorption input, dose has to be specified as an argument and NOT IN THE 

INITIAL CONDITION OF THE MODEL IN THE ODE VARIABLE TAB.  

 

 As the dose is an argument, it is not possible to specify different 

doses per group for models with infusion or first order absorption input. 

All groups of the design considered have the same dose. Otherwise, the user 

should use the user defined model option. 
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Table 2. Pharmacokinetic models with Michaelis-Menten elimination included in the library of models 
 

Name Input Cpt Elimination Parameterisation Administration Arguments 

bolus_1cpt_VVmkm IV-bolus 1 Michaelis-Menten V, Vm, km sd - 

infusion_1cpt_VVmkm IV-infusion 1 Michaelis-Menten V, Vm, km 
sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_1cpt_kaVVmkm 1st order 1 Michaelis-Menten ka, V,Vm, km 
sd doseMM 

md doseMM,tau 

bolus_2cpt_Vk12k21Vmkm IV-bolus 2 Michaelis-Menten 
V, k12, k21, Vm, 

km 
sd - 

bolus_2cpt_V1QV2Vmkm IV-bolus 2 Michaelis-Menten 
V1, Q, V2, Vm, 

km 
sd - 

infusion_2cpt_Vk12k21Vmkm IV-infusion 2 Michaelis-Menten 
V, k12, k21, Vm, 

km 

sd doseMM,TInf 

md doseMM,TInf, tau 

infusion_2cpt_ V1QV2Vmkm IV-infusion 2 Michaelis-Menten 
V1, Q, V2, Vm, 

km 

sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_2cpt_kaVk12k21Vmkm 1st order 2 Michaelis-Menten 
ka, V, k12, k21, 

Vm, km 

sd doseMM 

md doseMM, tau 

oral1_2cpt_kaV1QV2Vmkm 1st order 2 Michaelis-Menten 
ka, V1, Q, V2, 

Vm, km 

sd doseMM 

md doseMM, tau 

bolus_3cpt_Vk12k21k31k13Vmkm IV-bolus 3 Michaelis-Menten 
V, k12, k21, 

k13, k31, Vm, km 
sd - 

bolus_3cpt_ V1Q1V2Q2V3Vmkm IV-bolus 3 Michaelis-Menten 
V1, Q1, V2, Q2, 

V3, Vm, km 
sd - 

infusion_3cpt_Vk12k21k13k31Vmkm IV-infusion 3 Michaelis-Menten 
V, k12, k21, 

k13, k31, Vm, km 

sd doseMM,TInf 

md doseMM,TInf, tau 

infusion_3cpt_V1Q1V2Q2V3Vmkm IV-infusion 3 Michaelis-Menten 
V1, Q1, V2, Q2, 

V3, Vm, km 

sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_3cpt_kak12k21k13k31Vmkm 1st order 3 Michaelis-Menten 
ka, k12, k21, 

k13, k31, Vm, km 

sd doseMM 

md doseMM,tau 

oral1_3cpt_kaV1Q1V2Q2V3Vmkm 1st order 3 Michaelis-Menten 
ka, V1, Q1, V2, 

Q2, V3, Vm, km 

sd doseMM 

md doseMM, tau 
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3.1.2 Library of pharmacodynamic models 

 

The library of PD models supports immediate response models (either as a 

function of observed concentrations, or linked to a pharmacokinetic model) 

and turnover response models (linked to pharmacokinetic models).  

The following tables present these models, giving the following elements 

for each drug model:  

- the name of the model function in the library 

- the parameters used (parameterisation) 

 

 

 

Immediate response pharmacodynamic models alone 

 

Linear, quadratic, logarithmic, Emax, sigmoid Emax, Imax, sigmoid Imax 

models with null or constant baseline are available. The list of these 

models is given in Table 3.  

These models are written in closed form and can be used in the case of a 

model with one response (PD evaluation or optimisation).  

 

For these models, the design variables are the concentrations or the doses 

instead of the sampling times.  

For example, if one uses a linear drug action model with a constant 

baseline (immed_lin_const) from the library, the model uses two parameters 

(Alin, S0). 

 
Pharmacodynamic models linked to pharmacokinetic model 

 
In this section, we consider models with two responses, with one response 

for the PK and the other one for the PD. We thus optimise sampling times 

for both responses using a PK/PD model. Using the libraries of models, we 

have four cases to compose the PK/PD model depending on the form for each 

submodel: either with an analytical form (AF) or a differential equation 

system (ODE). 

 

Therefore, there are four cases of PK/PD models in PFIM library: 

 

1. PK model with linear elimination (AF) and immediate response PD 

model (AF) 

2. PK model with linear elimination (AF) and turnover response PD 

model (ODE) 

3. PK model with Michaelis-Menten elimination (ODE) and immediate 

response PD model (AF) 

4. PK model with Michaelis-Menten elimination and turnover response 

PD model (ODE)  
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Table 3. Immediate response pharmacodynamic models included in the PD library for PD alone and for PK/PD model 

 

Drug action 

models 

Baseline 

Null baseline Constant baseline 

Name Parameterisation Name Parameterisation 

Linear immed_lin_null Alin immed_lin_const Alin, S0 

Quadratic immed_quad_null Alin, Aquad immed_quad_const Alin, Aquad, S0 

Logarithmic immed_log_null Alog immed_log_const Alog, S0 

Emax immed_Emax_null Emax, C50 immed_Emax_const Emax, C50, S0 

Sigmoid Emax immed_gammaEmax_null Emax, C50, gamma immed_gammaEmax_const Emax, C50, gamma, S0 

Imax immed_Imax_null Imax, C50 immed_Imax_const Imax, C50, S0 

Sigmoid Imax immed_gammaImax_null Imax, C50, gamma immed_gammaImax_const Imax, C50, gamma, S0 
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To use PFIM Interface for design evaluation and optimisation for a PK/PD 

model, the two models must be in the same format.  

 

In the first case, immediate response pharmacodynamic models are written 

with an analytical form and thus they can be associated to pharmacokinetic 

models with first order linear elimination (Table 1) which are also written 

with analytical forms. In this case, the user has to complete the tab using 

analytical form options.  

 

However, for the three other cases, the PK response and the PD response are 

written either with different forms or both with a differential equation 

system (Case 4). That is why, PFIM Interface 4.0 calls a specific function 

in order to create a system of differential equations describing the 

corresponding PK/PD model. 

 

For these cases, the user has thus to complete the tab of the ODE variables 

(section 5.3.3).  

  

 

The list of the immediate response PD models is thus given in Table 3 plus 

those of Table 4. The list of the turnover response PD models is given in 

Table 5.  

For the second case where a PK model with linear elimination is associated 

to a turnover PD response model, the PK model is written with a 

differential equations system. Consequently, only some PK models from the 

Table 1 are implemented: 

- for bolus input, only single dose models; 

- for infusion input, single dose and multiple dose  

- for first order absorption input, single dose and multiple dose\\ 

 

 

For models with a bolus input, the dose has to be specified in the tab of 

the ODE variables (section 5.3.3) as the initial condition of the 

differential equation system. For models with infusion or first order 

absorption input, dose has to be specified as an argument. Consequently, it 

is not possible to specify different doses per group for models with 

infusion or first order absorption input. All groups of the design 

considered have the same dose. Otherwise, the user should use the user 

defined model option. 
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Table 4. Immediate response pharmacodynamic models linked to a pharmacokinetic model included in the library* 

 

Drug action 

models 

 

Baseline/disease models 

Linear progression Exponential increase Exponential decrease 

Name Param. Name Param. Name Param. 

Linear immed_lin_lin 
Alin, S0, 

kprog 
immed_lin_exp 

Alin, S0, 

kprog 
immed_lin_dexp 

Alin, S0, 

kprog 

Quadratic immed_quad_lin 
Alin, Aquad, 

S0, kprog 
immed_quad_exp 

Alin, 

Aquad, S0, 

kprog 

immed_quad_dexp 
Alin, Aquad, 

S0, kprog 

Logarithmic immed_log_lin 
Alog, S0, 

kprog 
immed_log_exp 

Alog, S0, 

kprog 
immed_log_dexp 

Alog, S0, 

kprog 

Emax immed_Emax_lin 
Emax, C50, 

S0, kprog 
immed_Emax_exp 

Emax, C50, 

S0, kprog 
immed_Emax_dexp 

Emax, C50, 

S0, kprog 

Sigmoid 

Emax 
immed_gammaEmax_lin 

Emax, C50, 

gamma, S0, 

kprog 

immed_gammaEmax_exp 

Emax, C50, 

gamma, S0, 

kprog 

immed_gammaEmax_dexp 

Emax, C50, 

gamma, S0, 

kprog 

Imax immed_Imax_lin 
Imax, C50, 

S0, kprog 
immed_Imax_exp 

Imax, C50, 

S0, kprog 
immed_Imax_dexp 

Imax, C50, 

S0, kprog 

Sigmoid 

Imax 
immed_gammaImax_lin 

Imax, C50, 

gamma, S0, 

kprog 

immed_gammaImax_exp 

Imax, C50, 

gamma, S0, 

kprog 

immed_gammaImax_dexp 

Imax, C50, 

gamma, S0, 

kprog 

 

* In addition to those in Table 3.  
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Table 5. Turnover response pharmacodynamic models linked to a pharmacokinetic model included in the library 

 

Types  

of 

response 

Models with impact on the 

Input Output 

 Name Parameterisation Name Parameterisation 

Emax turn_input_Emax Rin,kout,Emax,C50 turn_output_Emax Rin,kout,Emax,C50 

Sigmoid 

Emax 
turn_input_gammaEmax Rin,kout,Emax,C50,gamma turn_output_gammaEmax Rin,kout,Emax,C50,gamma 

Imax turn_input_Imax Rin,kout,Imax,C50 turn_output_Imax Rin,kout,Imax,C50 

Sigmoid 

Imax 
turn_input_gammaImax Rin,kout,Imax,C50,gamma turn_output_gammaImax Rin,kout,Imax,C50,gamma 

Full 

Imaxa  
turn_input_Imaxfull Rin,kout,C50 turn_output_Imaxfull Rin,kout,C50 

Sigmoid 

full 

Imaxa 

turn_input_gammaImaxfull Rin,kout,C50,gamma turn_output_gammaImaxfull Rin,kout,C50,gamma 

  
a Full Imax means Imax is fixed equal to 1 
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3.2 User-defined models  

Users can also define their own model, analytically (as an R expression or 

an R function) or using a system of differential equations. A file has to 

be created according to each model form (see Section 5.3.2). 

 

3.2.1 Analytical form defined through an R expression  

 

Description 

 

The model file must start with the three following red lines, without any 

space between each line; moreover they have to start with the key symbol 

“#$” to be understood by PFIM. 

 

#$Model definition 

#$ka, V, Cl 

#$ 

formA <-expression() 

form<-c(formA) 

tf<-list(Inf) 

 

The first line cannot be changed. The second line indicates the names of 

the parameters of the model to be estimated. The third line specified the 

argument(s) when a function is specified on the fourth line.  

 

The user must start to specify the model from the fourth line. Here only 

“#$” is written on the third line (no additional argument to be specified 

since the model equation is given directly using the R function 

“expression” on the fourth line. 

 

In case of analytical form, the model for each response should be written 

assigned in an object called ‘formi’ where i is the letter of the alphabet 

A,B,C,…. The “formi” for all the responses are then grouped in a vector 

called “form”: 
 

form<-c(formA,formB,formC,…) 

 

If the model for a response is defined over intervals by different 

expressions, each response should be written as a vector of expressions. 

Each expression can be defined in an object ‘formI’, where I = 1, 2, 3,…. 

For example, if the user wants to give three expressions for the first 

response, he can write as follows: 

 

formA<-c(form1,form2,form3) 

 

formA can be a model of the PFIM libraries or defined by the user.  

 

User also needs to define an object “tf” which indicates the time until 

when to use the model for the expression form1. “tf” has to be a list of 

objects corresponding to “tf” for each response. The length of “tf” must be 

equal to the number of responses. In case of one response model, using one 

expression defined from 0 to Infinity:  

 

tf<-c(Inf) 
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Example 1: Single response model at steady-state in analytical form using 

an R expression  

 

 
#$Model definition 

#$k,V 

#$ 

formA <-expression(1/(V)/(1-exp(-k*24))*(exp(-k*t))) 

form<-c(formA) 

tf<-list(Inf) 

 
The analytical expression in this example describes a one compartment model 

after IV bolus at steady-state, with a dose interval equal to 24h 

(bolus_1cpt_Vk). In this case, if the dose is not equal to 1, the user has 

to specify the variable “dose” in the expression and the value of the dose 

in the design tab (see section 5.4). However, if the user defines his 

model, he can also specified the value of the dose in the analytical 

expression by replacing 1 by 500 for instance for a dose equal to 500. In 

this case, the user has to put in the design tab the dose equal to 1. If 

the dose is defined by the user in the analytical expression of the model, 

the options of design with multiple groups with different doses can no 

longer be used. The “tf” object indicates the time until when to use the 

specified expression for the model (here, time Infinity). 

 

 

 

Example 2: PK model with a linear elimination and immediate response PD 

model in analytical form using an R expression  

 

 

#$Model definition 

#$ka,V,Cl,Imax,C50,S0 

#$ 

formA<-expression(dose/V*ka(ka-(Cl/V))*(exp(-(Cl/V)*t)-exp(-ka * t))) 

formB<-paste("-Imax*",formA,"/(C50+",formA,")+S0") 

formB<-parse(text=formB) 

tf<-list(Inf,Inf) 

form<-c(formA,formB) 

 

These analytical expressions describe a PK/PD model. The PK model is a one 

compartment model with a first order absorption and elimination (formA) and 

the PD model (formB) is an immediate response model with a constant 

baseline. In this case, the user has to specify the dose in the design tab 

(see section 5.4).  

 

Note that  to write formB, we use the R function paste which converts its 

arguments to character strings and concatenate them. The R function parse 

is used in order to obtain an expression of the model. 

 

The “tf” object indicates the time until when to use the model for the PK 

(here, time Infinity) and until when to use the PD model (here, time 

Infinity). Here, “tf” is thus a list of two elements.   

 

 

“form” is the vector of the models for all responses, and the second object 

is “tf”. 
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Example 3: PK model after multiple dose administration using an analytical 

form, based on functions from the library of models 

 

It is also possible to use the functions of the library of models to create 

new models. This is illustrated in the following example.  
 
#$Model definition 

#$ka,V,k 

#$ 

form1<-oral_1cpt_kaVk()[[1]] 

form2<-oral_1cpt_kaVk_md(N=5,tau=12)[[1]] 

formA<-c(form1,form2) 

tf<-list(c(12,Inf)) 

form<-formA 

 

In this illustration, the user creates a model combining two analytical 

expressions for a one compartment oral absorption: the first expression 

corresponds to the model after the first administration (form1) and the 

second expression corresponds to the model after the fifth administration 

(form2). Use of predefined functions of the library of models implies the 

use of “[[1]]” at the end of the call of the function to select the part of 

the function corresponding to the expression of the model.  

 

The “tf” object indicates the time until when to use the model for the 

first administration (here, time 12) and until when to use the model for 

the fifth administration (here, time Infinity). 

Then, the user defines two objects: the first object is “form”, the vector 

of the models, and the second one is “tf”. 

 

This case is useful for evaluation and optimisation of a design including 

sampling times after the first and the fifth administration.  

If the user defines the model by using the library of model, he has to 

specify the dose in the design tab (see section 5.4).  

 

 

Example 4: PK model with a linear elimination and immediate response PD 

model in analytical form, based on functions from the library of models 

 

This example illustrates how to write a PK/PD model using functions 

implemented the PKPD library. 

 

#$Model definition 

#$ka,V,Cl,Imax,C50,S0 

#$ 

formA<-oral1_1cpt_kaVCl()[[1]] 

formB<-immed_Imax_const(formA)[[1]] 

tf<-list(Inf,Inf) 

form<-c(formA,formB) 
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3.2.2 Analytical form defined through an R function 

 
Description 

 

The R function for a PFIM Infertace 4.0 model should take the following 

form: 

 

#$Model definition 

#$ ka,k,V 

#$ 

form<-function(t,p,X) { 

. . . 

} 
 

The four lines in red have to be written, without any space between each 

line; moreover the three first lines have to start with the key symbol “#$” 

to be understood by PFIM. The first line cannot be changed. The second line 

indicates the names of the parameters of the model to be estimated. The 

third line specified the additional argument(s) of the function. Here there 

is no additional argument except except t, y and p which are default 

arguments. Therefore only “#$” is written on the third line. Last, the 

fourth line indicates the name of the function (form) which must remain 

unchanged. The 3 arguments of the function are: 

- a vector of times t  

- a vector of parameters p  

- a scalar X which represents the dose  

 

The function returns a vector of predictions of each time point in t, 

computed using the dose X and the parameters p. 

 

 
 

 
Example 5: PK model after single dose administration using an analytical 

form with user-defined R function 

 

#$Model definition 

#$ ka,k,V 

#$ 

form<-function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

 

In this example, the user creates a function of a one response model 

describing a one compartment oral absorption. 
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Example 6: PK model after multiple dose administration using an analytical 

form with user-defined R function 

 

#$Model definition 

#$ ka,V, Cl 

#$ 

form<-function(t,p,X){ 

ka<-p[1] 

V<-p[2] 

Cl<-p[3] 

 

N<-5 

tau<-12 

 

y<-0 

for (n in 1:N) 

  { 

  indic<-t>=(n-1)*tau 

  yn<-indic*(X/V*ka/(ka-Cl/V)*(exp(-Cl/V*(t - (n - 1) * tau))-exp(-ka*(t - 

(n - 1) * tau))))  

  y<-y+yn 

  } 

return(y) 

} 

 

In this illustration, the user creates a function of one response model 

describing a one compartment oral absorption after five administration 

doses with a between dose interval equal to twelve hours. The number of 

doses and the between dose interval are defined within the function. 

 

3.2.3 Models defined through a differential equation system  

 
Description 

 
Model defined as a solution of a differential equation system must be 

called “formED”. It can be given by the users who need to write an R 

function in a format suitable for the solver package deSolve, using the 

following form: 

 

 

          #$Model definition ODE 

          #$ka,km,Vm,V 

          #$ 

          formED<-function(t,y,p) 
{ 

  ...  

} 

 

 

 

The four lines in red have to be written, without any space between each 

line; moreover, the three first lines have to start with the key symbols 

“#$”. The first line of this Block, ‘#$Model definition ODE’ cannot be 

changed. The second line indicates the names of the parameters of the model 

to be estimated. The third line specified the additional argument(s) of the 

function. Here there is no additional argument, except t, y and p which are 

default arguments. Therefore only “#$” is written on the third line. Last, 

the fourth line indicates the name of the function (formED) which must 

remain unchanged. The 3 arguments of the function are: 
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- a vector of time t 

- the current estimate of the variables in the ode system y 

- a vector of parameters p 

 

Within the function, the user has to define the name of the parameters in 

vector p and the differential equation system. 

 

The function returns a list with 2 elements: 

- the first element is a vector giving the values of the derivatives 

for each equation in the differential equation system, computed 

for each time point in t using the parameters p 

- the second element is a vector of predictions computed for each 

time point in t using the parameters p; in PFIM, this vector 

contains the response(s) we are observing 

 

The initial values of the system have to be specified in the ODE tab 

presented in the section 5.3.3. 

 

The implementation of differential equations system requires the use of the 

lsoda function included in the library “deSolve” (R. Thomas Petzoldt) and 

of the fdHess function included in the library “nlme” developed by Jose 

Pinheiro and Douglas Bates. 

The lsoda function uses a function of the same name written in Fortran by 

Linda R. Petzold and Alan C. Hindmarsh. This function solves system of 

differential equations using the Adams method, a predictor – corrector 

method for non-stiff systems; it uses the Backward Differentiation Formula 

(BDF) for stiff systems. The fdHess is used for numerical derivation. It 

evaluates an approximate gradient of a scalar function using finite 

differences.  

 

 

 

Example 7: Single response PK model using a differential equation system 

created by the user 

 

 
#$Model definition ODE 

#$ka,km,Vm,V 

#$ 

formED<-function(t,y,p) 

{ 

   ka<-p[1] 

   km<-p[2] 

   Vm<-p[3] 

   V<-p[4] 

  

   yd1<--ka*y[1] 

   yd2<-+ka*y[1]- V * (Vm * y[2]/(V * km + y[2])) 

 

   list(c(yd1,yd2),c(y[[2]]/V)) 

  } 

 

This example describes a one compartment model first order absorption and 

Michaelis-Menten elimination. 

 

The first four lines in the body of the function assign model parameters 

from the vector p.  The next two lines describe the derivatives of the 

system (yd1 and yd2). More specifically, each derivative represent the drug 

concentration in the specific compartment at the instant t, and its 

elements can be either positive or negative. The notation ydX denotes the 



 
30 

derivative of the variable in compartment X while the notation y[X] denotes 

the quantity in the same compartment (see 

documentation for the deSolve package for details).The last line defines 

the elements returned by the function: 

- the first item is mandatory for the deSolve package, and should 

always consist of a vector with the derivatives of the system 

(here, the two elements yd1 and yd2) 

- the second item defines the response, here the concentration in 

the second (central) compartment which is defined by the quantity 

in this compartment (y[2]) divided by the volume of distribution 

V. Several responses can be given. 

 

 

 

Example 8: Multiple response PK model using a differential equation system 

created by the user 

 

 

#$Model definition ODE 

#$ka,cl,V,Clm,R 

#$ 

formED<-function(t,y,p) 

{ 

ka<-p[1] 

cl<-p[2] 

V<-p[3] 

clm<-p[4] 

R<-p[5] 

yd1<--ka*y[1] 

yd2<-ka*y[1]-cl/V*y[2]-R*y[2]        

yd3<-R*y[2]-clm*y[3] 

                   

list(c(yd1,yd2,yd3),c(y[2]/V,y[3])) 

} 

 

 

This example describes a two response model using a differential equation 

system. In this case, the second argument of the list is composed of two 

objects corresponding to: the first measure of interest is the 

concentration in the compartment 2 scaled by the volume and the second 

measure of interest is the concentration in the compartment 3, 

respectively. 
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Example 9: PK model after multiple dose administration using a differential 

equation system created by the user 

 

#$Model definition ODE 

#$ka,V, Cl 

#$ 

formED<-function(t,y,p) 

{ 

ka<-p[1] 

V<-p[2] 

Cl <-p[3] 

 

tau<-12 

input_oral1<-function(ka,V,dose,n,tau,t){ 

if(n==0){return(dose*ka/V*exp(-ka*t))} 

else{return(dose*ka/V*exp(-ka*(t-

n*tau))+input_oral1(ka,V,dose,n-1,tau,t))} 

} 

n<-t%/%tau 

input<-input_oral1(ka,V,dose,n,tau,t)  

  

dy<--Cl/V*y[1]+input 

 

list(c(dy),c(y[1])) 

} 

 

In this illustration, the user creates a function of one response model 

describing a one compartment oral absorption after multiple dose 

administration with a between dose interval between two doses equal to 

twelve hours. The number of doses and the between dose interval are defined 

within the function. 
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4. Installation 
The R 2.6 or higher and available in Windows operating system (32bits or 

64bits) needs to be installed. Depending on the use of PFIM Interface 4.0, 

additional packages available in the R library are needed: 

to use a differential equation system to describe the model: “deSolve” and 

“nlme” packages 

to use the Federov-Wynn algorithm: “combinat” package. 

An additional package “numDeriv” is needed for the computation of the full 

Fisher information matrix and for numerical derivatives of models written 

as standard R functions 

The easiest way to install packages is directly from the web. To install 

the packages deSolve, nlme, combinat and numDeriv, start R and choose the 

Packages item from the menu. Choose Install package(s) from CRAN to install 

from the web (you will see a list of all available packages pop up -- 

choose deSolve, nlme, combinat and numDeriv).  

  

4.1 Windows installation 

To install the Windows version of PFIM Interface 4.0, download the 

application ‘http://www.pfim.biostat.fr/download/PFIMInterface-4.0-windows-

installer.exe’ available on the webpage www.pfim.biostat.fr. Then simply 

double click on this application and click on the button to execute the 

program. 

To complete the installation of PFIM interface 4.0, follow the different 

steps detailed below. 

  

http://www.pfim.biostat.fr/download/PFIMInterface-4.0-windows-installer.exe
http://www.pfim.biostat.fr/download/PFIMInterface-4.0-windows-installer.exe
http://www.pfim.biostat.fr/
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Figure 1: Click the button “Next”              Figure 2: Indicate the path to 

to continue the procedure               install the directory files and                                                       

n                                       click the button next 

                                                                                                                     

                    

 

 

 

 

 

                  
Figure 3: Click the button « Next »         Figure 4 : The setup is proceeding 
To begin the installation  

                      

 

 

 

 

 

 

                                          
                       Figure 5: To complete the installation  

                       click on the button “Finish”.  

                       Installation is successful 
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5. Use 

5.1 Main user Interface 

Figure 6 shows the screen that appears when the user starts the program 

PFIM Interface 4.0. 

 
Figure 6: PFIM Interface 4.0: initial screen. 

The user can either create a new project directory (File/New project) or 

load an existing one (File/ Open project) as it is shown in Figure 7. 

 
Figure 7: Load or create a new project. 

5.1.1 Creation of a new project 

In order to create a new project, the path of the directory for the “New 

project” must be specified as shown in Figure 8. 
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Figure 8: Choose directory for the new project 

By default, the names of the new project and of the output file (Figure 9) 

are “My Project” and Stdout.r, respectively, but these names can be 

modified.  

 
Figure 9: Default tab after the creation of a project. 

5.1.2 Loading existing project 

In order to load an existing project, it is either possible to use the Menu 

of PFIM Interface 4.0 as shown in Figure 10, or by clicking on the 

stdin.pfim file stored in the directory of the project selected.  
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Figure 10 Loading existing project tab 

 

 

 

 

 

 

 
Figure 11 Browsing project to be loaded tab 

5.2 Input tab 

The user should enter a name for the project and specify the name for the 

output file where the results will be stored. The Project location is 

created automatically once selected the folder where the new project can be 

stored. The user can choose the R version to be used by specifying the path 

in the “Path to R” section. It is also possible to require the saving of 
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the Fisher Infromation Matrix in a text file by specifying the name of the 

text file (“filename.txt”) in the “Output FIM file” section. 

 

5.3 Model tab 

This tab is for model specification. A model can be either selected from 

the PFIM library or it can be written in a user defined form, using either 

analytical form or a system of differential equations (ODE). Below some 

figures showing how specify a model in the PFIM Interface 4.0. In the 

“Models” section of this documentation, model writings and examples are 

reported in more details. 

5.3.1 Model from the library 

After having opened a project or created a new project in PFIM Interface 

4.0 it is possible to select the preferred model from the library of models 

using the scroll bar in the model tab (Figure 12) and choose the regimen 

(Single dose, Multiple doses, Steady State). For the first example we 

selected a PK one compartment first order absorption model, with parameters 

ka, V, k, and a single dose regimen. 

 
Figure 12: Model-selection from the model library 
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Figure 13: Specification of multiple doses administration type and specification of 

the needed variables N and tau 

It is also possible to define a PKPD model through the model library as 

shown is Figure 14. Please mind to specify the two responses in the number 

of responses section. 

 

 

 
Figure 14: PKPD model selection from the model library. The PK is a one compartment 

first order oral absorption model, with function in the library parameterized in 

ka, V k. The PD is an Imax model with constant baseline parameterized in Imax, C50  

and S0.  
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5.3.2 User-defined model 

The user can create either an analytical model or an ODE system (Figure 

15). If a user defined model has already been specified in this project, it 

can also be edited and modified.   

See “Models” section for details on how to write its own model.  

 

Figure 15: Definition of the model by the user here for a model with two responses 

 

5.3.3 Parameters of the model 

Once the model is specified, one can click on the “Parameters” section 

(Figure 16), where values of the mean and the variance of the population 

parameters have to be defined.  

If the between-subject variance of a parameter is assumed to be zero, this 

should be specified under the variance column of the related parameter. 

PFIM would then remove the corresponding row and column in the Fisher 

information matrix. In the parameter tab it is also possible to indicate 

whether some parameter should be kept fixed in the evaluation or 

optimisation of FIM. In that case, the variance of the correspondent fixed 

parameter will be automatically set to 0.   

In the same tab it is possible to choose between either additive or 

exponential model for the between-subject variance.  

Values of the standard deviation of the residual error should be specified. 

The residual error is additive with a general model for variance: 

var()=(inter+slope*f)
2
, where f is the structural model. This variance error 

model includes the constant variance model (slope = 0) or the constant 

coefficient of variation model (inter = 0) as special cases. The parameters 

inter and slope are included in the population parameters to be estimated. 

Regarding a multiple response model, the user has to complete the different 

values for the standard deviation of the residual error for all responses 

one by one using the list box (Figure 17).  
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Figure 16: Parameters section tab for a single response model 

 

 

 

 

 
Figure 17: Parameters section tab for a multiple response model with the list box 

to choice the parameters of the residual error for each response 

In case of an ODE system, the ODE variables section has to be filled as in 

Figure 18.  
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Figure 18: Tab of the ODE variables  

In this case, the time for the initialisation of the system must be given 

(usually 0) and the initial values in each compartment at this time have to 

be given as a vector in the “initial conditions for each elementary 

design”. The size of this vector has to be equal to the number of equations 

of the system. For the models coming from the libraries, the number of 

equations of the system is equal to the number of compartments of the 

model. Several vectors can be specified in case of different groups of 

subjects with different initial conditions. 

 

To use this tab, an example is presented below illustrated in Figure 19 

using a system with two equations.   

If there are two elementary design with different initial conditions 

defined as (13.8; 0) and (15; 0) respectively for the first and the second 

elementary design. The size of the vectors for the initial conditions is 

equal to 2 due to the two equation system. 

To input the initial condition for the first elementary design, the user 

has to follow the next instructions with the illustration on Figure 19. 

 Put the value 13.8 in the white box     .     

 To validate the value click on the button     , the value is in the 

box     .  

 Repeat these two previous steps for the value 0.  

 Click on the button     , the first elementary design is specified 

and validated in the box     .  

 

In order to validate the initial conditions for the second elementary 

design defined here 15 and 0, the user has to repeat the previous steps. 

The screen showed on Figure 19 should be obtained. The first line and the 

second line in the box     correspond respectively to the initial 

conditions for the first and the second elementary design. 

1
2

3

4 5

5

5
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Figure 19: Tab of the ODE variables: illustration to enter the initial conditions 

 
Finally, parameters of “Error tolerance for the differential equation 

solver” are set by default but can be changed by the user. Those parameters 

are the following: 

- RtolEQ: relative error tolerance, either a scalar or an array as 

long as 'y'. See details in help for lsoda function. 

Default value is 1e-06. 

- AtolEQ:  absolute error tolerance, either a scalar or an array as 

long as 'y'.  See details in help for lsoda function*. 

Default value is 1e-06 

- Hmax:  an optional maximum value of the integration stepsize. A 
maximum value may be necessary for non-autonomous models 

(with external inputs), otherwise the simulation possibly 

ignores short external events. Default value is Inf. 

 

 

*Copied from help for lsoda: 

“The input parameters 'rtol', and 'atol' determine the error control 

performed by the solver.  The solver will control the vector *e* of 

estimated local errors in *y*, according to an inequality of the form max-

norm of ( *e*/*ewt* ) <= 1, where *ewt*is a vector of positive error 

weights.  The values of 'rtol' and 'atol' should all be non-negative. The 

form of *ewt* is: 

 

                      *RtolEQ* * abs(*y*) + *AtolEQ* 

 

where multiplication of two vectors is element-by-element. If the request 

for precision exceeds the capabilities of the machine, the Fortran 

subroutine lsoda will return an error code; under some circumstances, the R 

function 'lsoda' will attempt a reasonable reduction of precision in order 

to get an answer. It will write a warning if it does so.” 

5.4 Design tab 

In this tab, the user specifies the characteristics of the population 

design to be evaluated or optimised. 

In the Fisher Information Matrix section, the type of Fisher information 

matrix to be evaluated or optimised can be selected. Three possible Fisher 

information matrices are implemented in PFIM Interface 4.0.: Population 

1
2

3
4

5
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(also available in previous versions of PFIM Interface), Individual and 

Bayesian.   

In the Dose regimen section, the user specifies if the dose is the same or 

not for all the involved groups in the population design. If the dose is 

the same, its value should be specified; if not, the values for each group 

can be defined (Figure 20). 

NB: if the model used is a user-defined model in which the dose was 

defined, the default value of a dose of 1 should be kept here. 

NB2: for models of the library after infusion, total dose should be given 

and the rate of infusion will be computed using the needed variable TInf. 

 

In the initial population design section, the user enters, for each group, 

the corresponding elementary designs. The value for the number of groups in 

the population design is then computed automatically.    

The user specifies also if the subjects in each elementary design are given 

as numbers or as proportions and enter the values. 

 

Figure 20 shows an example of Design tab for a single response model, for 

which the population design is composed of 2 groups of 30 and 90 subjects 

respectively, both with dose of 100 and 200, respectively, with the 

sampling times (0.5, 1, 4, 12) and (0.5, 2, 6) respectively. 

  
Figure 20: Design tab example for a single response model 

Figure 21 provides with an example of Design tab for a two response model 

with the same sampling times for both responses. Indeed the button 

“identical design for all responses” is selected.  

The population design is composed of one group of 32 subjects with a dose 

of 100 and with the same sampling times for both responses (0.5, 1, 4, 12). 
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Figure 21: Design tab example for a two response model with the same sampling times 

for both responses 

 

 

Figure 22 and Figure 23 give an example of Design tab for a two response 

model with different sampling times for each response. The button 

“identical design for all responses” has to be unselected.  

The population is composed of one group of 32 subjects with a dose of 100 

and with the sampling times for the first response (0.5, 1, 4, 12) (Figure 

22) and for the second response: (0, 0.5, 12, 48, 120) (Figure 23). 

 

 

   
Figure 22: Design tab example for a two response model with different sampling 

times for each response: choice of the design for the first response 
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Figure 23: Design tab example for a two response model with different sampling 

times for each response: choice of the design for the second response 

In all these examples (Figure 20 – Figure 23) the requested Fisher 

information matrix to be evaluated or optimized is the Population one.  

5.5 Design evaluation step tab 

At this step, evaluation of the population design entered in the “Design 

tab” can be performed by clicking on the ‘Run’ button on the windows 

toolbar, following with a click on the ‘Evaluation’ (see Figure 24). See 

Section 6 for the output. Evaluation can be performed either using the 

expression of the block diagonal Fisher information matrix (Figure 24) or 

the full expression of the Fisher information matrix (Figure 25).  

 
Figure 24: How to perform evaluation with the “run” button using the block diagonal 

expression of the Fisher information matrix 
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Figure 25: How to perform evaluation with the “run” button using the full 

expression of the Fisher information matrix  

 

5.6 Optimisation algorithms tab 

 
This tab must be filled in to optimise a design. The optimisation can be 

performed with either the Simplex or the Fedorov-Wynn algorithm. 

Corresponding section of the chosen algorithm must be filled in. In the 

case of multiple response models, the selection of the button “identical 

design for all responses” on the Design tab allows to optimise the design 

with the same sampling times for all responses.  

5.6.1 Simplex algorithm 

The first option to be chosen is whether optimising or not the proportions 

or number of subjects. Then, a value for the minimum delay between two 

sampling times can be entered. By default, this delay is set to 0.  

It is then possible to specify whether the iteration step should be printed 

or not in the R command window.  

If different optimal sampling times for each response are required, the 

allowed intervals of sampling times for the optimisation must be provided 

for each response (Figure 26). 

Parameters for the Simplex algorithm are set by default but they can be 

changed by the user. These are:  

- the parameter for the initial simplex building gives the percentage 

of change from the initial design to create the initial vertices of 

the Simplex algorithm. Default is 20% 

- the maximum iteration number of the Simplex algorithm which is set by 

default to 5000 

- the relative convergence criterion of the Simplex algorithm set by 

default to 1e-6. 
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Figure 26: Optimisation algorithms tab for the Simplex algorithm  

5.6.2 Fedorov-Wynn algorithm 

Allowed sampling times can be specified in the Fedorov-Wynn algorithm 

corresponding tab. Several set of allowed sampling times may be provided, 

each set being called the sampling interval. 

Then, the user must specify the number of sampling times to be taken from 

each sampling interval. More flexibility can be given by specifying for 

each sampling interval several numbers: the Fedorov-Wynn algorithm will 

then select the best ones. 

The number of sampling intervals and the total number of samples per 

subject are then computed automatically. 

The Federov-Wynn algorithm always optimises the number of groups and the 

proportions of subjects per group. 

Please note that the initial population design given in the “Design” tab 

must correspond to the constraint specified in this Fedorov-Wynn algorithm: 

the sampling times must be included in the sampling interval and the number 

of sampling times from each interval must be concordant with the allowed 

numbers.  

  

An example of the Fedorov-Wynn section is given in Figure 27 for a single 

response model. In this example, two sampling intervals are specified with 

the allowed sampling times (0.5, 1, 2, 3, 4, 6, 8, 10, 12) and (48.5, 49, 

50, 51, 52, 56, 58, 60) respectively. The user allowed optimization of a 

design with either two or three sampling times in each interval. The 

minimal total number of allowed sampling times per subject is then 4 and 

the maximum 6.  
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Figure 27: Example of the Optimisation algorithms tab for the Fedorov-Wynn 

algorithm for a single response model  

 
An example of the Fedorov-Wynn section is given in Figure 28 and Figure 29 

for a two response model. In this example, one sampling interval is 

specified with the allowed sampling times (0, 0.5, 1, 6, 12, 24, 48, 72, 

96, 120, 144) for the first response (see Figure 28) and for the second 

response (0, 24, 36, 48, 72, 96, 120, 144) (see Figure 29). The user 

allowed optimization of a design with five sampling times in this interval 

for each response. The minimal total number of allowed sampling times per 

subject is then 4 and the maximum 4.  

 
Figure 28: Example of the Optimisation algorithms tab for the Fedorov-Wynn 

algorithm for a two response model: choice for the first response 
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Figure 29: Example of the Optimisation algorithms tab for the Fedorov-Wynn 

algorithm for a two response model: choice for the second response  

5.7 Design optimisation step tab 

At this step, optimisation can be performed by clicking on the ‘Run’ button 

on the windows toolbar and then choosing ‘Optimization’.  

  
Figure 30: How to perform optimisation with the ‘run’ button using the expression 

of the block Fisher information matrix  
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Figure 31: How to perform optimisation with the ‘run’ button using the expression 

of the complete Fisher information matrix  

5.8 Graph tab 

Graph of either the model or sensitivity function or both can be requested 

by selecting corresponding button(s) (Figure 32). Intervals for the times 

(X axis) have to be specified. Intervals for the Y axis are set by defaults 

to the range of the concentrations but can be changed.  

It is possible to plot a graph with a log scale for X and/or Y axis by 

selecting respectively the ‘Log X axis’ button and/or the ‘Log Y axis’ 

button. 

Format of the graph can be either jpeg or pdf.  

Regarding multiple response models, the user can choose to have a graph for 

each response with different scales and different labels. To do that, the 

user has to unselect the button entitled “Identical lower and upper 

sampling times for each response”.  

   
Figure 32: Graph tab 
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Please note that graphs of the model or sensitivity function may also be 

obtained before performing any design evaluation or optimisation by 

clicking the ‘Run’ button on the windows toolbar and then choosing “Graph 

only“(Figure 33)  

 
Figure 33: Run graph only 

 
6. Results 

PFIM Interface 4.0 opens an R command window to run the evaluation or the 

optimisation (Figure 34). At the end, an output file (named by default 

Stdout.r or with the name specified in the input files tab) is created in 

the directory of the project. It can be viewed by clicking on the button 

“View output file” in the output R command window.  

 
Figure 34: Tab of the results with buttons to see the output file and the graph  

Regarding optimisation step with the Fedorov-Wynn algorithm, in addition to 

the R command windows PFIM Interface 4.0 opens a warning window (Figure 35) 
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but as it does not prevent the PFIM Interface to run it can just be 

ignored. It will be removed for the next version of PFIM.  

  
Figure 35: Tab of the results with buttons to see the output file and the graph and 

a warning window 

If any graph was requested, a file called ‘Rplots’ is also created in the 

project directory and can be viewed by clicking on the “Show graph” or 

“Show sensitivity graph” button in the same output R command window.  

The results are also written in the output file named by default stdout.r.  

According design evaluation or design optimisation, the following sections 

are going to describe the different elements of the output file. 

6.1 Evaluation output file and objects 

6.1.1 Single response model 

 
Figure 36 represents the output file from the design evaluation as in the 

Example 1 - described in the “Examples” section.  

 

The user can read on Figure 36: 

 

The name of the function used: PFIM Interface 4.0. 

 

The name of the project and the date. 

 

A summary of the input: model, variance error model, residual 

between-subject variance model, initial population design, initial numbers 

or proportions of subjects and doses, initial conditions values, errors 

tolerances for the solver of differential equations system if used and the 

expression of the Fisher information matrix used (block or full).  

 

     The population Fisher information matrix, a dim*dim symmetric matrix 

where dim is the total number of population parameters to be estimated. 

 

 The value of each population parameter with the expected standard 

error on each parameter and the corresponding coefficient of variation.  

 

4
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The value of the determinant of the Fisher information matrix and the 

value of the criterion (determinant^(1/dim)) where dim is the total number 

of population parameters.  

 

    The eigenvalues of the Fisher information matrix and the correlation 

matrix. 

 

 

PFIM Interface 4.0  

  

Project:  Example 1.1_ExpressionMod_1.2.1 

  

Date:  Tue May 12 08:16:29 2015 

  

**************************** INPUT SUMMARY ******************************** 

Analytical function models :   

 

dose/V * ka/(ka - k) * (exp(-k * t) - exp(-ka * t))  

  

Design:   

Sample times for response: A  

                times subjects doses 

1 c(0.33, 1.5, 5, 12)      200   100 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

Computation of the Population Fisher information matrix: option =  1 

  

FIM saved in FIM.txt 

  

******************* FISHER INFORMATION MATRIX ****************** 

          [,1]       [,2]      [,3]      [,4]       [,5]       [,6]       [,7] 

[1,] 38.467601   82.86694 -3.770151  0.000000   0.000000    0.00000    0.00000 

[2,] 82.866939 8310.88576 77.977971  0.000000   0.000000    0.00000    0.00000 

[3,] -3.770151   77.97797  4.938229  0.000000   0.000000    0.00000    0.00000 

[4,]  0.000000    0.00000  0.000000 59.190253   4.291831   31.98158   28.15946 

[5,]  0.000000    0.00000  0.000000  4.291831 674.519747  213.76982  193.67427 

[6,]  0.000000    0.00000  0.000000 31.981582 213.769824 3086.36693  295.74230 

[7,]  0.000000    0.00000  0.000000 28.159462 193.674273  295.74230 1208.60606 

[8,]  0.000000    0.00000  0.000000 85.786235 226.638153 1167.39328 1544.00257 

           [,8]  
[1,]    0.00000 

[2,]    0.00000 

[3,]    0.00000 

[4,]   85.78624 

[5,]  226.63815 

[6,] 1167.39328 

[7,] 1544.00257 

[8,] 4118.40001 

************************** EXPECTED STANDARD ERRORS ************************ 

------------------------ Fixed Effects Parameters ------------------------- 

    Beta   StdError      RSE   

ka  2.00 0.17480765 8.740383 % 

k   0.25 0.01239415 4.957658 % 

V  15.00 0.52291110 3.486074 % 

 

------------------------- Variance of Inter-Subject Random Effects --------- 

   omega2   StdError      RSE   

ka   1.00 0.13203572 13.20357 % 

k    0.25 0.03977275 15.90910 % 

V    0.10 0.01933249 19.33249 % 

------------------------ Standard deviation of residual error -------------  

           Sigma   StdError       RSE   

sig.interA  0.50 0.04077340  8.154681 % 

sig.slopeA  0.15 0.02293716 15.291443 % 
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******************************* DETERMINANT ******************************** 

2.930397e+20 

******************************** CRITERION ********************************* 

  

361.7144 

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX *********** 

  

        FixedEffects VarianceComponents 

min      2490.782416           3.598669 

max      8312.446928         702.614507 

max/min     3.337283         195.242884 

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]          [,4]          [,5]        [,6] 

[1,]  1.0000000 -0.2836926  0.3614018  0.0000000000  0.0000000000  0.00000000 

[2,] -0.2836926  1.0000000 -0.4466787  0.0000000000  0.0000000000  0.00000000 

[3,]  0.3614018 -0.4466787  1.0000000  0.0000000000  0.0000000000  0.00000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000000  0.0008945383 -0.01707708 

[5,]  0.0000000  0.0000000  0.0000000  0.0008945383  1.0000000000 -0.13147266 

[6,]  0.0000000  0.0000000  0.0000000 -0.0170770841 -0.1314726648  1.00000000 

[7,]  0.0000000  0.0000000  0.0000000  0.0186040109 -0.1824110325  0.12863647 

[8,]  0.0000000  0.0000000  0.0000000 -0.1283097535  0.0574454432 -0.31004589 

            [,7]        [,8] 

[1,]  0.00000000  0.00000000 

[2,]  0.00000000  0.00000000 

[3,]  0.00000000  0.00000000 

[4,]  0.01860401 -0.12830975 

[5,] -0.18241103  0.05744544 

[6,]  0.12863647 -0.31004589 

[7,]  1.00000000 -0.68199073 

[8,] -0.68199073  1.00000000 

 

Figure 36: Example of design evaluation output file for a single response model 
 

Moreover, several R objects are returned in the R command window: 

dose 

prot: design evaluated for each response 

subjects: number of subjects for each group 

mfisher: the population Fisher information matrix  

determinant: the determinant of the population Fisher information matrix 

crit: the value of the criterion 

p: the vector  

se: the vector of the expected standard errors for each parameter 

cv: the corresponding coefficient of variation, expressed in persent. 

EigenValues: the eigenvalues of the Fisher information matrix 

corr.matrix: the correlation matrix 

 

6.1.2 Multiple response model 

Figure 37 represents the output file from the design evaluation as in the 

Example 2 described in the “Examples” section.  

 
The user can read on the Figure 37: 

 

The name of the function used: PFIM Interface 4.0. 

 

The name of the project and the date. 

 

A summary of the input: model(s), sampling times in the elementary 

designs for each model(s), doses or initial conditions and subjects 

corresponding to those designs, residual variance error model for each 

model(s), residual between-subject variance model, initial population 

design, errors tolerances for the solver of differential equations system 

if used and the expression of the Fisher information used (block or full). 

1

2

3
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The figure shows a two responses model(differential equations form) with a 

group described by 5 sampling times for both first and secon responses for 

100 subjetcs. The dose is equal to 100. 

 

     The population Fisher information matrix, a dim*dim symmetric matrix 

where dim is the total number of population parameters to be estimated. 

 

The value of each population parameter with the expected standard error 

on each parameter and the corresponding coefficient of variation.  

 

The value of the determinant of the Fisher information matrix and the 

value of the criterion (determinant^(1/dim)) where dim is the total number 

of population parameters.  

 

    The eigenvalues of the Fisher information matrix and the correlation 

matrix. 

 

PFIM Interface 4.0  

  

Project:  Example 2 

  

Date:  Tue May 12 08:24:26 2015 

  

**************************** INPUT SUMMARY ******************************** 

  

Differential Equations form of the model:   

function (t, y, p)  

{ 

    V <- p[1] 

    Vm <- p[2] 

    km <- p[3] 

    Alin <- p[4] 

    pk <- y[1:1] 

    pd <- y[2:2] 

    conc <- y[1] 

    if (t <= 1) { 

        dpk1 <- (100/(1 * V)) + (-Vm) * pk[1]/(km + pk[1]) 

    } 

    else { 

        dpk1 <- (-Vm) * pk[1]/(km + pk[1]) 

    } 

    dpd1 <- 0 

    pdIm <- Alin * conc 

    return(list(c(dpk1, dpd1), c(pk[1], pdIm))) 

} 

Design:   

Sample times for response: A  

                   times subjects 

1 c(0.5, 2, 30, 49, 180)      100 

 

Sample times for response: B  

                    times subjects 

1 c(0.5, 2, 14, 110, 150)      100 

  

Initial Conditions at time 0 :  

0 0  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0 + 0.2 *f)^2 

Variance error model response B : ( 0.1 + 0 *f)^2 

  

Error tolerance for solving differential equations system: 

RtolEQ = 1e-08 , AtolEQ = 1e-08 , Hmax =  Inf 

Computation of the Population Fisher information matrix: option =  1 

FIM saved in FIM.txt 

  

4
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******************* FISHER INFORMATION MATRIX ****************** 

  

             [,1]         [,2]        [,3]          [,4]         [,5] 

 [1,]   2.6770341     9.444202   -57.39048    -0.7254162 0.000000e+00 

 [2,]   9.4442023 50919.213161  7982.73905   657.4076389 0.000000e+00 

 [3,] -57.3904833  7982.739050 33057.82792 -6714.1078293 0.000000e+00 

 [4,]  -0.7254162   657.407639 -6714.10783 38772.8151987 0.000000e+00 

 [5,]   0.0000000     0.000000     0.00000     0.0000000 7.938111e+02 

 [6,]   0.0000000     0.000000     0.00000     0.0000000 4.463216e-01 

 [7,]   0.0000000     0.000000     0.00000     0.0000000 3.916193e-03 

 [8,]   0.0000000     0.000000     0.00000     0.0000000 2.546794e+00 

 [9,]   0.0000000     0.000000     0.00000     0.0000000 8.097541e+00 

             [,6]         [,7]         [,8]         [,9] 

 [1,]   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [2,]   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [3,]   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [4,]   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [5,]   0.4463216 3.916193e-03 2.546794e+00     8.097541 

 [6,] 586.1230244 1.453005e-01 9.449987e+01   301.234913 

 [7,]   0.1453005 7.516656e+02 8.332548e-01   116.540931 

 [8,]  94.4998735 8.332548e-01 1.725786e+04  1714.876645 

 [9,] 301.2349133 1.165409e+02 1.714877e+03 64572.948196 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

       Beta    StdError      RSE   

V    12.200 0.624822332 5.121495 % 

Vm    0.082 0.004534793 5.530235 % 

km    0.370 0.005841524 1.578790 % 

Alin  0.100 0.005182493 5.182493 % 

 

  

------------------------- Variance of Inter-Subject Random Effects --------- 

  

     omega2   StdError      RSE   

V      0.25 0.03549293 14.19717 % 

Vm     0.25 0.04137028 16.54811 % 

Alin   0.25 0.03647948 14.59179 % 

 

  

------------------------ Standard deviation of residual error -------------- 

  

           Sigma    StdError      RSE   

sig.slopeA   0.2 0.007625037 3.812519 % 

sig.interB   0.1 0.003945487 3.945487 % 

 

  

******************************* DETERMINANT ******************************** 

 

5.994606e+31 

 

******************************** CRITERION ********************************* 

 

3395.176 
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****************** EIGENVALUES OF THE FISHER INFORMATION MATRIX *********** 

  

        FixedEffects VarianceComponents 

min     26521.376944           2.561446 

max     64636.681018       17196.209993 

max/min     2.437154        6713.478513 

 

  

******************* CORRELATION MATRIX ****************** 

  

             [,1]        [,2]       [,3]        [,4]          [,5] 

 [1,]  1.00000000 -0.06785010  0.2062542  0.04352023  0.000000e+00 

 [2,] -0.06785010  1.00000000 -0.2101514 -0.05600795  0.000000e+00 

 [3,]  0.20625422 -0.21015142  1.0000000  0.19876898  0.000000e+00 

 [4,]  0.04352023 -0.05600795  0.1987690  1.00000000  0.000000e+00 

 [5,]  0.00000000  0.00000000  0.0000000  0.00000000  1.000000e+00 

 [6,]  0.00000000  0.00000000  0.0000000  0.00000000 -5.826757e-04 

 [7,]  0.00000000  0.00000000  0.0000000  0.00000000  1.311462e-05 

 [8,]  0.00000000  0.00000000  0.0000000  0.00000000 -6.146867e-04 

 [9,]  0.00000000  0.00000000  0.0000000  0.00000000 -1.068259e-03 

               [,6]          [,7]          [,8]         [,9] 

 [1,]  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [2,]  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [3,]  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [4,]  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [5,] -0.0005826757  1.311462e-05 -0.0006146867 -0.001068259 

 [6,]  1.0000000000  5.840399e-04 -0.0272653545 -0.047524772 

 [7,]  0.0005840399  1.000000e+00  0.0006127203 -0.016746938 

 [8,] -0.0272653545  6.127203e-04  1.0000000000 -0.050000216 

 [9,] -0.0475247719 -1.674694e-02 -0.0500002164  1.000000000 

 

  

Figure 37: Example of design evaluation output file for a two response model 

 

 
Moreover, the PFIM() function returns the following R objects:  

dose 

prot: design evaluated for each response 

subjects: number of subjects for each group 

mfisher: the population Fisher information matrix  

determinant: the determinant of the population Fisher information 

matrix 

crit: the value of the criterion 

p: the vector  

se: the vector of the expected standard errors for each parameter 

cv: the corresponding coefficient of variation, expressed in persent. 

EigenValues: the eigenvalues of the Fisher information matrix 

corr.matrix: the correlation matrix 

 
  

  
7  
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6.2 Optimisation output file and objects 

Figure 38 represents the output file corresponding to the optimal Bayesian 

design described in the Examples section in the paragraph 1.3.  

 

The user can read on the Figure 38: 

 

The name of the function used: PFIM Interface 4.0  

 

The name of the project and the date. 

 

A summary of the input: structural model, between-subject and error 

variance model, initial design, initial numbers or proportions of subjects 

and doses, total number of allowed samples, criterion associated to the 

initial design. 

 

Sampling times specifications (according to the algorithm used) 

within which the optimal samples will be chosen and error tolerances for 

the solver of differential equations system if used.  

 

The optimised design and the associated criterion.  

For the simplex algorithm, the number of iterations performed and the 

number of function evaluations, the status of the convergence (false or 

achieved) are reported  

For the Fedorov-Wynn algorithm for optimal population design, the 

optimal group structure with the proportion of subjects and the equivalence 

in number are then reported. The best one group protocol is also always 

reported with associated criterion.  

When optimising a Bayesian or an individual design, the resulted 

design correspond to the best one group protocol. 

 

The population or individual or Bayesian Fisher information matrix, a 

dim*dim symmetric matrix where dim is the total number of population 

parameters to be estimated, the number of individual parametres + the 

number of the error model parameters or only the number of individual 

parameters respectively. The name of the file where is possibly saved the 

Fisher information matrix is given. 

 

The value of each parameter with the expected standard error 

(StdError) and relative standard error (RSE). In case of Bayesian design, 

the associated shrinkages values are also reported. 

 

The value of the determinant of the Fisher information matrix and the 

value of the criterion (determinant^(1/dim)) where dim is defined in  

    

      The eigenvalues of the Fisher information matrix and the correlation 

matrix. 
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PFIM Interface 4.0   

  

Project: Example Optimisation 

  

Date: Thu Jul 31 09:22:17 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

  

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)        1   100 

 

  

Total number of samples: 4 

  

Associated criterion value: 3.5272 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

               times freq Subjects doses 

1 c(0.33, 1.5, 5, 8)    1        1   100 

 

  

Associated criterion: 3.8066 

  

 

  

  

1

2

4
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Computation of the Bayesian Fisher information matrix 

 
FIM saved in FIM.txt 

 

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]       [,2]       [,3] 

[1,]  1.590507   2.096455 -0.2426030 

[2,]  2.096455 354.843266  4.4964361 

[3,] -0.242603   4.496436  0.2013882 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta  StdError      RSE   Shrinkage   

ka  2.00 0.9638509 48.19255 %  23.22522 % 

k   0.25 0.0688475 27.53900 %  30.33586 % 

V  15.00 3.1862487 21.24166 %  45.12080 % 

 

  

******************************* DETERMINANT ******************************** 

  

55.15913 

  

******************************** CRITERION ********************************* 

  

3.806617 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     9.552493e-02                 NA 

max     3.549127e+02                 NA 

max/min 3.715393e+03                 NA 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.0000000 -0.4133690  0.5638373 

[2,] -0.4133690  1.0000000 -0.6330761 

[3,]  0.5638373 -0.6330761  1.0000000 

 

 

Figure 38: Example of design optimisation output file 

 

 
Moreover, the PFIM() function returns the following R objects:  

mfisher: the population or individual or Bayesian Fisher information matrix 

corresponding to the optimised protocole 

determinant:  the determinant of the Fisher information matrix 

crit: the value of the criterion 

se: the vector of the expected standard errors for each parameter 

cv: the corresponding coefficient of variation, expressed in percent 

(relative standard error) 

sh: the shrinkage values for each parameter in case of Bayesian design 

EigenValues: the eigenvalues of the Fisher information matrix 

corr.matrix: the correlation matrix 

 

  

5

 
6 
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7. Examples  
This section contains a series of examples for EVALUATION (first section) 

and OPTIMISATION (second section) of design in pharmacokinetics (PK) and 

pharmacodynamics (PD).  

We have tried to illustrate all the features of PFIM Interface 4.0, in this 

choice of examples. In Example_1 of each section we have more specifically 

illustrated all the new features in this version 4.0 of PFIM Interface. 

Furthermore, examples available from the previous version of PFIM 

Interface, version 3.1, were also implemented in PFIM Interface 4.0.  

All the input, model and output codes used for these examples are available 

when PFIM is downloaded, in the directory “Examples” stored in Documents in 

the directory “PFIM Interface 4.0”. They are detailed below. 

 

Evaluation 

1. Example 1: PK Model 
The purpose is to evaluate a design for a one compartment first order 

absorption PK model with parameters ka, V and k after single dose 

administration. 

Random effects are exponentially modelled. 

 

 Mean Fixed mean Variance 

ka 

k 

2 

0.25 

 1 

0.25 

V 15  0.1 

   

inter 0.5  

slope 0.15  

Please note: as we don’t fix here any parameter, the “Fixed mean” column is 

kept as default that is without any of the squares checked 

 

1.1 Model Files 

Four possible and exchangeable ways for defining the model are available 

in PFIM. These are described in section 3 of this documentation. Below 

are reported the figures of the 4 possible models (Figure 39-42). 

 
Figure 39 : Model defined from the library 
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Figure 40 : User defined model thorough analytical expression 

 

 
Figure 41 : User defined model thorough analytical function 

 

 

 
Figure 42 : User defined model thorough differential equations 

Graphs pre-evaluation 
Graphs of the simulated model and sensitivity function with respect to 

parameters were obtained by running “Graph only” (see the “Use” section 

paragraph 6.8 “Graph tab”.  
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Figure 43 : Simulated model 

 
Figure 44 : Sensitivity function with respect to parameters 

 

Population Fisher Information Matrix (P-FIM) 

Evaluation of the Population Fisher information matrix (P-FIM) for several 

designs, all patients have a dose of 100. 

 

1.1.1 One group with Elementary Design 𝛏𝟏 

200 subjects who have the same elementary design composed of 4 sampling 

times: 

  ξ1 = (0.33, 1.5, 5, 12)  

For this first example, we report the PFIM files (stdin.R, model.r and 

Stdout.r) for each possible model form (see paragraph 1.1 of this section 

of Examples). We therefore repeated the example four times, using four 

input files. Those PFIM files are stored in the directory of Examples, 

under EVALUATION and EXAMPLE_1 in 4 different folders that are called: 
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“Exemple 1.1._ModLibrary_1.2.1; 1.1_ExpressionMod_1.2.1; 1.1_ModeOde_1.2.1; 

1.1_UserDefMod_1.2.1. 

 
Figure 45 : Design tab for examples of section 1.1.1 

1.1.2 One group with Elementary Design 𝛏𝟐 

200 subjects who have the same elementary design composed of 3 sampling 

times: 

ξ2 = (1, 3, 8)  

 

 

Figure 46: Design tab for example 1.1.2 

1.1.3 Two Groups Design 

Two group population design of 400 subjects: 200 with elementary designs  ξ1 

and 200 with elementary design ξ2.  
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Figure 47: Design tab for example 1.1.3 

1.2 Individual Fisher Information Matrix (I-FIM) 

Evaluation of the Individual Fisher Information Matrix for the elementary 

design ξ1 and then ξ2. 

1.2.1 Elementary Design 𝛏𝟏 

 
Figure 48 : Design tab for example 1.2.1 
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1.2.2 Elementary Design 𝛏𝟐 

 
Figure 49: Design tab for example 1.2.2 

1.3 Bayesian Fisher Information Matrix (B-FIM) 

Evaluation of the Bayesian Fisher Information Matrix for the elementary 

design ξ1 and then ξ2. 

1.3.1 Elementary Design 𝛏𝟏 

 
Figure 50: Design tab for example 1.3.1 
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1.3.2 Elementary Design 𝛏𝟐 

 

 
Figure 51: Design tab for example 1.3.2 

Comment on results 

Comparing examples in 1.2 and 1.3 it is noticeable that the evaluation of 

B-FIM leads to smaller RSE particularly for the parameter ka, which in the 

evaluation of I-FIM is very high, above all for the second elementary 

design, reaching the value of 138 %. 

Comparing the two elementary designs, for both I-FIM and B-FIM, results are 

overall better with  ξ1 than with ξ2,as the variability on ka is kept lower 
and the criterion is slightly higher. For B-FIM, shrinkage values are 

provided and they show that with ξ1 more information is obtained than with 

ξ2. 

1.4 Evaluation of FIM with Fixed Parameter 

Another new feature of v4.0 is to assume that a parameter is known (fixed) 

and not estimated. 

Here we evaluated Population, Individual and Bayesian Fisher Information 

Matrix for the design ξ1 assuming that the parameter ka  is fixed (and has 

no variability). Those examples are stored in the directory of EXAMPLE 

EVALUATIONEXAMPLE1, and the names of their folder are: 1.4.1, 1.4.2, 

1.4.3 for P-FIM, I-FIM or B-FIM evaluation, respectively. 

Comment on results 

Comparing the output of example 1.4.1 with the one in section 1.1.1, we can 

see that the standard errors are slightly reduced in this example. 

As for example 1.4.1, fixing ka resulted in slight improvements of the 

Relative Standard Errors in 1.4.2 with respect to the results in section 

1.2.1 
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Figure 52: Parameters tab when fixing parameter 𝐤𝐚 

 
2. Example 2:PK and immediate response PD model using the 

libraries of PK and PD Models (ODE) 

 100 subjects with a dose of 100 

The aim is to evaluate, in a population approach, the following one 

group designs: 

 sampling times for PK response: 0.5, 2, 30, 49, 180  

 sampling times for PD response: 0.5, 2, 14, 110, 150  

 

for a PKPD model, where the PK is one compartment infusion input with 

Michaelis-Menten elimination after a single dose administration with 

parameters V, Vm and km and the PD is an immediate response model with a 

linear drug action and without baseline, where the parameter is Alin. 

 

 

  Mean Fixed 

mean 

Variance 

 V 

Vm 

12.2 

0.082 

 0.25 
0.25 

 km 0.37  0 

 Alin 0.1  0.25 

    

Resp A inter 0  

slope 0.2  

Resp B inter 0.1  

slope 0  

 

Optimisation 

1. Example 1: PK Model 
We illustrate optimisation algorithms with the same examples used in the 

Evaluation section and with an additional example (Example 3) that shows a 

case of repeated dose regimen. As for Evaluation, Example 1 is more 

detailed with all the new features. For Example 2 and 3 optimisation was 
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performed only with Federow-Wynn (FW) algorithm. For Example 1 and 2 we 

therefore show only the parts concerning optimisation.  

1.1 Population Fisher Information Matrix (P-FIM) 

The aim is to optimise a design for 200 subjects with a dose of 100. 

 

1.1.1 Simplex algorithm 

 Initial sampling times vector: ξ1 = (0.33, 1.5, 5, 12)  

 Time interval for the optimisation: (0,12) 

 
Figure 53: Simplex algorithm specifications 

Comment on results 

The criterion associated with the initial times (ξ1) was 361.7. 
When optimizing with Simplex algorithm, the criterion associated to the 

optimal times (0.325, 1.632, 4.9, 12) improved of about 1 point, (362.4).  

1.1.2 Fedorov-Wynn algorithm  

 Allowed sampling times: 0.33,1,1.5,3,5,8,12 

 Maximum total number of points in one elementary 

protocol: 4 

Compare the result with the one obtained with Simplex algorithm 

 
Optimal times where found for three groups of approximately 71, 123 and 6 

subjects, respectively. These are: (0.33, 1, 1.5, 8); (0.33, 1.5, 8, 12) and 
(0.33, 1.5, 3, 12) for the first, second and third group, respectively. For 

this example, the optimisation with Fedorov-Wynn (FW) algorithm led to a 

criterion of 371.3, higher than the one obtained with the Simplex algorithm 

(362.4) in point 1.1.1. Relative standard errors are acceptable in both 

cases (below 20%.   

1.1.3 Fixed parameters 

The aim is to optimise the design in 1.1 keeping the parameter ka fixed 

(assuming no variability on 𝑘𝑎) using the constrains as in 1.1.1 and 1.1.2. 
Corresponding examples are stored in the directory of PFIM interface 4.0 

(ExamplesOPTIMISATION->EXAMPLE_1) in the folder 1.1.3.1 and 1.1.3.2 for 

the examples optimisation with Simplex or with FW algorithm, respectively.  
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Figure 54: Fedorov-Wynn algorithm specifications 

1.1.4 Fixed sampling times 

Optimize the design in 1.1 with the Fedorov-Wynn algorithm keeping fixed 

two sampling times (0.33, 1.5), using the constrains as in 1.1.1 and 1.1.2. 
(In PFIM Interface 4.0 it is possible to fix times only with the Fedorov-

Wynn algorithm). 

 

 
Figure 55: Fedorov-Wynn algorithm specifications: fixed sampling times 

1.1.5 Fixed Parameter and Fixed Sampling Times 

Optimize P-FIM using the Fedorov-Wynn algorithm keeping the parameter ka 

fixed (assuming no variability on ka) and keeping fixed 2 sampling times 
(0.33, 1.5). 

Essentially this example is the combination of examples 1.1.3.2 and 1.4.1.  
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1.2 Individual Fisher Information Matrix (I-FIM) 

Optimize the design in 1.1 this time for the Individual Fisher Information 

Matrix (I-FIM). Use same constraints in 1.1.1 and 1.1.2. 

The optimisations performed for P-FIM are repeated in case of I-FIM. 

Examples 1.2.1 and 1.2.2 show the optimisation of I-FIM with the Simplex 

algorithm and Fedorov-Wynn algorithm, respectively; in Example 1.2.3 the 

optimisation is performed with the Fedorov-Wynn algorithm, fixing parameter 

ka and two sampling times (0.33, 1.5).   

1.3 Bayesian Fisher Information Matrix (B-FIM) 

Optimize the design in 1.1 this time for the Bayesian Fisher Information 

Matrix (I-FIM). Use same constraints in 1.1.1 and 1.1.2. 

The optimisations performed for P-FIM are repeated in case of B-FIM. 

Examples 1.3.1 and 1.3.2 show the optimisation of B-FIM with the Simplex 

algorithm and Fedorov-Wynn algorithm, respectively; in Example 1.3.3 the 

optimisation is performed with the Fedorov-Wynn algorithm, fixing parameter 

ka and two sampling times (0.33, 1.5).   
 

 

2. Example 2: PK and immediate response PD model using the 
libraries of PK and PD Models (ODE) 

 100 subjects with a dose of 100 

 Allowed sampling times for PK response: 0.5, 2, 30, 49, 180  

 Allowed sampling times for PD response: 0.5, 2, 14, 110, 150  

 Number of sampling times to be optimized: 3 
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Figure 56: Fedorov-Wynn algorithm specifications for the first response  

 

 
Figure 57: Fedorov-Wynn algorithm specifications for the second response 
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3. Example 3: Repeated doses 
This example deals with the optimisation of a design using the Fedorov-Wynn 

algorithm and with a model defined by the user using the functions of the 

library of models. 

Repeated doses of 100 with oral absorption every 12 hours are considered. 

The model is a one compartment model first order absorption, parameterized 

with rate constant of absorption (ka), volume (V) and clearance (Cl). The 

mean and the variance of those parameters are given in the table below. 

The random effects are exponentially modelled and the variance error model 

is proportional.  

 

 

 

 Mean Fixed mean Variance 

ka 

Cl 

0.7 

0.5 

 0.25 

0.25 

V 5  0.25 

   

inter 0  

slope 0.2  

 

 

The purpose is to optimise a design with 90 subjects, with sampling times 

after the first and the fifth doses, using the Fedorov-Wynn algorithm. 

After the first dose, 2 or 3 samples per subject are allowed in the 

following set (0.5, 1, 2, 3, 4, 6, 8, 10, 12). After the fifth dose, 2 or 3 

samples per subject are also allowed in the following set: (48.5, 49, 50, 

51, 52, 56, 58, 60). 

The initial population design used to run the Fedorov-Wynn algorithm is 

composed of four sampling times: (0.5, 12, 50, 60) to be performed in 90 

subjects. 
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4. Examples from PFIM Interface 3.1 

 

4.1 Single response model 

4.1.1 Evaluation 

4.1.1.1 Example A 

This example deals with the evaluation of a population design using the 

library of model. 

The purpose is to evaluate a design using a one compartment model after a 

single bolus administration. The parameters and their values are given in 

the table. The random effects are modelled exponentially. The variance 

error model is a combined error model. 
The design to be evaluated is composed of two groups: one group of 30 

subjects with a dose of 100 and sampling times at (0.5, 2, 3, 10) and one 

group of 90 subjects with a dose of 200 and sampling times at (1, 4, 12). 

 

                               

 Mean Fixed mean Variance 

V 

k 

10 

0.2 

 0.25 

0.25 

   

inter 0.5  

slope 0.15  

 

4.1.1.2 Example B 

This example deals with the evaluation of a design using a differential 

equation system. The model is a one compartment model first order 

absorption and Michaelis-Menten elimination. The parameters and their 

values are given in the table below. 

The design to be evaluated is 0.5, 2, 16, 23.5 with a dose of 13.8 

performed in 30 subjects.  

The variance error model is proportional and the modelling of the random 

effects is exponential. 
 

 

 

 Mean Fixed mean Variance 

ka 

V 

2.72 

12.2 

 0.25 

0.25 

Vm 1.004  0.25 

km 0.37  0.25 

   

slope 0.2  

 

4.1.2 Optimisation 

 Be careful, remember that, with the Fedorov-Wynn algorithm, the sampling 

times of the initial population design should be included in the allowed 

sampling times, so as the number of allowed samples per group.  
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4.1.2.1 Example C 

This example deals with the optimisation of a design using the Fedorov-Wynn 

algorithm and with a model defined by the user using the functions of the 

library of models. 

Repeated doses of 100 with oral absorption every 12 hours are considered. 

The model is a one compartment model first order absorption, parameterized 

with rate constant of absorption (ka), volume (V) and clearance (Cl). The 

mean and the variance of those parameters are given in the table below. 

The random effects are exponentially modelled and the variance error model 

is proportional.  

 

 

 

 

 Mean Fixed mean Variance 

ka 

Cl 

0.7 

0.5 

 0.25 

0.25 

V 5  0.25 

   

slope 0.2  

 

The purpose is to optimise a design with 90 subjects, with sampling times 

after the first and the fifth doses, using the Fedorov-Wynn algorithm. 

After the first dose, 2 or 3 samples per subject are allowed in the 

following set (0.5, 1, 2, 3, 4, 6, 8, 10, 12). After the fifth dose, 2 or 3 

samples per subject are also allowed in the following set: (48.5, 49, 50, 

51, 52, 56, 58, 60). 

The initial population design used to run the Fedorov-Wynn algorithm is 

composed of four sampling times: (0.5, 12, 50, 60) to be performed in 90 

subjects. 

 

4.1.2.2 Example D 

This example deals with the optimisation of a design using the Fedorov-Wynn 

algorithm.  The model is described by a two compartment model after 

infusion administration, parameterized in volume (V), rate constant of 

elimination (k), and inter-compartmental parameters k12 and k21. The total 

dose is equal to 550 and the duration of infusion is 0.0625. The random 

effects are modelled exponentially. The variance error model is 

proportional. 

The mean, the variance of the parameters and the parameters of the variance 

error model are given in the tab bellow. 

 

 

 Mean Fixed mean Variance 

V 

k 

3.08 

0.0808 

 0.1 

0.2 

k12 0.175  0.3 

k21 0.116  0.1 

   

slope 0.25  

 

A set of eleven allowed sampling times is given: (0.0625, 1, 2, 3, 4, 6, 7, 

10, 14, 18, 21). 

90 subjects can be involved with either 3 or 4 samples per subject.  

An initial design is proposed, with 4 samples per subject, the same into 

the 90 subjects: (0.0625, 7, 14, 21). 
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4.1.2.3 Example E  

This example deals with the optimisation of a design using the Simplex 

algorithm and with a model defined by the user using the functions of the 

library of models. 

Ten repeated doses of 2.5 with oral absorption every 24 hours are 

considered. The model is a two compartment model first order absorption, 

parameterized with rate constant of absorption (ka), volume for the first 

compartment (V1), clearance (Cl), volume (V2) and the intercompartmental 

clearance (Q). The between subject variance model is exponentially and the 

variance model is additive. 

Values of the parameters are given in the tab bellow: 

 

 

 Mean Fixed mean Variance 

ka 

Cl 

1.5 

0.345 

 0.502 

0.059 

V1 8  0.018 

Q 0.145  0 

V2 18  1.9 

   

inter 0.08  

 

 

The aim is to optimise a design with 250 subjects, with sampling times 

between the first dose and the tenth doses and also five days after the 

last one, using the Simplex algorithm. Thus, the admissible sampling times 

are between 0 and 360 hours. 

The initial population design used to run the Simplex algorithm is composed 

of 6 sampling times: (1, 24, 96, 180, 250, 300) to be performed into 250 

subjects. 

 

4.2 Multiple response model 

4.2.1 Evaluation 

4.2.1.1 Example F  

 
This example deals with the evaluation of a joint modelling of a drug 

concentration and its effect (two responses): a one compartment model with 

a first order absorption and elimination for the drug concentration is used 

and an immediate response model with a constant baseline for the effect. 

The model is described using the libraries of models. The between subject 

variance model is exponentially and the variance model is combined for the 

first response and additive for the second response. 

Values of the parameters are given in the tab bellow: 

 

 Mean Fixed mean Variance 

ka 

V 

1.6 

8 

 0.70 

0.02 

Cl 0.13  0.06 

Imax 0.73  0.001 

C50 0.17  0.7 

S0 100  0 

   

inter(first response)  0.6  

slope 0.07  

inter(second response) 8  
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The aim is to evaluate a design with one group with sampling times at 0.5, 

1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96, 120 hours for the first response and 

0, 24, 36, 48, 72, 96, 120, 144 hours for the second response with 32 

subjects. The total dose is equal to 100.  

 

4.2.1.2 Example G  

 
This example deals with the evaluation of a design for a joint model for a 

drug and its metabolite. The first response is described by a one 

compartmental model with first order absorption and the second response is 

described by a one compartment with a first order metabolic rate constant. 

Because of structural identifiability problem in absence of urinary data, 

we fix the volume of distribution (Vm) of the metabolite equal to 1, and 

thus estimate Clm and km. The model is described using a differential 

equation system. The length of vector in the “initial conditions for each 

elementary design” is equal to 3. The first element of this vector is the 

dose equal to 300 in this example. The between subject variance model is 

exponentially and the variance model is combined for the first response and 

proportional for the second response. 

 

Values of the parameters are given in the tab bellow: 

 

 
 Mean Fixed mean Variance 

ka 

V 

2.86 

300 

 0.7 

0.02 

Cl 160  0.06 

Clm 0.16  0.17 

km 0.03  0 

   

inter(first response)  0.003  

slope 0.28  

inter(second response) 0.13  

 

 
The design to be evaluated is composed of 1 group of 80 subjects with 

sampling times at (1, 3, 6, 12) for the first response and sampling times 

at (1, 6, 11, 12) for the second response. 

 

4.2.1.3 Example H  

 
This example deals with the evaluation of a design study for a PK/PD model 

(two responses). The PK model is a one compartmental model with first order 

absorption and elimination. The drug effect (PD model) is described by a 

turnover model with inhibition of the input.  

This PK/PD model is described using the libraries of models. In this 

example, we are in the case where we have a PK model with linear 

elimination (written using an analytical form) and a turnover response PD 

model (written using a differential equation system). Thus, the user has to 

complete the tab of the ODE variables because PFIM Interface 3.1 calls a 

specific function in order to create a system of differential equation 

system describing the corresponding PK/PD model. The between subject 

variance model is exponentially. The variance model is combined for the PK 

model and additive for the second response. 
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Values of the parameters are given in the tab bellow: 

 

 
 Mean Fixed mean Variance 

ka 

V 

1.6 

8 

 0.70 

0.02 

Cl 0.13  0.06 

Rin 5.4  0.2 

kout 0.06  0.02 

Imax 1  0 

C50 1.2  0.01 

   

inter(first response)  0.6  

slope 0.07  

inter(second response) 8  

 

 
The design to be evaluated is composed of one group of 32 subjects with 

sampling times at 0.5, 1, 2 ,3 ,6, 9,12,24,36,48,72,96,120 for the PK model 

and 0, 24,36,48,72,96,120,144 for the PD model. The dose is equal to 100.  

 

4.2.2 Optimisation 

4.2.2.1 Example I  

 
This example deals with the optimisation of a design using the Simplex 

algorithm for a joint modelling of a drug concentration and its effect: a 

one compartment model with a first order absorption and elimination for the 

drug concentration is used and an immediate response model with a constant 

baseline for the effect. The model is described using analytical forms with 

the ‘user defined model’ option. 
This model has been used for design evaluation in the Example F using the 

library of models.  

 

Values of the parameters are given in the tab bellow: 

 

 

 Mean Fixed mean Variance 

ka 

V 

1.6 

8 

 0.70 

0.02 

Cl 0.13  0.06 

Imax 0.73  0.001 

C50 0.17  0.7 

S0 100  0 

   

inter(first response)  0.6  

slope 0.07  

inter(second response) 8  

 

The aim is to optimise a design with one group of 32 subjects with 5 

sampling times between 10 min and 120 hours for the drug concentration 

measurements and 5 sampling times between 0 and 144 hours for the effect 

measurements.  
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4.2.2.2 Example J  

 
This example deals with the optimisation of a design using the Fedorov-Wynn 

algorithm for a joint model for a drug and its metabolite (two responses). 

The first response is described by a one compartmental model with first 

order absorption and the second response is described by a one compartment 

with a first order metabolic rate constant. The model is described using a 

differential equation system. The between subject variance model is 

exponentially and the variance model is combined for the first response and 

proportional for the second response. 

This model has been used for design evaluation in the Example G.  

 
Values of the parameters are given in the tab bellow: 

 

 
 Mean Fixed mean Variance 

ka 

V 

2.8 

300 

 0.70 

0.02 

Cl 160  0.06 

Clm 0.16  0.001 

R 0.03  0.7 

   

inter(first response)  0.03  

slope 0.28  

slope(second response) 0.13  

 

 

 
The aim is to optimise a design (same sampling times for both responses) 

with 4 sampling times for a total number of samples equal to 400 using the  

following allowed sampling times: 0.0625, 1, 3, 6, 11, 12, 14 and 15hours. 

 Be careful, remember that, with the Fedorov-Wynn algorithm, the sampling 

times of the initial population design should be included in the allowed 

sampling times, so as the number of allowed samples per group.  
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