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Disclaimer

We inform users that the PFIM Interface 4.0 is a tool developed by the
Laboratory “Biostatistics-Investigation-Pharmacometrics” - UMR 1137 INSERM
and University Paris Diderot, under R and GCC.

PFIM Interface 4.0 is a library of functions. The functions are published
after a scientific validation.

However, it may be that only extracts are published.

By using this library of functions, the user accepts all the conditions of
use set forth hereinafter.

Licence

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

You should have received a copy of the GNU General Public License along with
this program. If not, see
<http://www.gnu.org/licenses/>.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
UNIVERSITE PARIS DIDEROT OR INSERM OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES,; LOSS OF USE, DATA, OR PROFITS,; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE .

Redistribution and use 1in source and binary forms, with or without
modification, are permitted under the terms of the GNU General Public
Licence and provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this 1list of conditions and the following disclaimer.

2. Redistributions 1in binary form must reproduce the above copyright
notice, this 1ist of conditions and the following disclaimer 1in the
documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, 1if any,
must include the following acknowledgment: "This product includes software
developed by Université Paris Diderot and INSERM (http://www.biostat.fr)."
Alternately, this acknowledgment may appear 1in the software itself, if and
wherever such third-party acknowledgments normally appear.

4. The names "PFIM" and "“PFIM Interface 4.0” must not be used to endorse or
promote products derived from this software without prior written
permission. For written permission, please contact
france.mentre@bichat.inserm. fr.


http://www.gnu.org/licenses/
http://www.biostat.fr)/
mailto:france.mentre@bichat.inserm.fr

5. Products derived from this software may not be called "PFIM", nor may
"PFIM" appear 1in their name, without prior written permission of the
University Paris Diderot and INSERM.

Copyright © PFIM Interface 4.0 - Giulia Lestini, Thu Thuy Nguyen, Cyrielle
Dumont, Caroline Bazzoli, Sylvie Retout, Hervé Le Nagard, FEmmanuelle
Comets and France Mentré - Université Paris Diderot - INSERM.

www.pfim.biostat.fr
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1. Introduction

Model based optimal design approaches are 1increasingly performed in
population pharmacokinetic/pharmacodynamics (PKPD) [1], which consist in
determining a balance between the number of subjects and the number of
samples per subject, as well as the allocation of times and doses,
according to experimental conditions. A good choice of design is crucial
for an efficient estimation of model parameters, especially when the
studies are conducted in patients where only a few samples can be taken per
subject. These approaches rely on the Fisher information matrix (FIM) for
nonlinear mixed effect models (NLMEM), available in several software tools
[2] and are a good alternative to clinical trial simulation. They require a
priori knowledge of the model and its parameters, which can usually be
obtained from previous experiments.

PFIM (www.pfim.biostat.fr), developed in our group since 2001 [3,4], 1is the
first tool for design evaluation and optimisation that has been developed
in R. Two versions are available: a R script version and a graphical user
interface version. PFIM Interface 4.0 is an extension of the graphical user
version PFIM Interface 3.1 and includes several new features based on the R
script program of PFIM 4.0 [5].

In this new version, for population designs, optimisation can be performed
with fixed parameters or fixed sampling times. The Fisher information
matrix obtained after evaluation or optimisation can be saved in a file.
Additional features for Bayesian designs are now available. The Bayesian
Fisher information matrix has been implemented. Design for maximum a
posteriori estimation of individual parameters can Dbe evaluated or
optimised and the predicted shrinkage is also reported [6]. A new way has
been added to specify user-defined models through an R function. It is now
possible to visualise the graphs of the model and the sensitivity functions
without performing evaluation or optimisation.

This documentation describes the methodology implemented in PFIM Interface
4.0 in Section 2. Section 3 describes how to specify models, either by
using the PKPD library or the user-defined model option. Sections 4 and 5
explain how to install and use PFIM Interface 4.0. Section 6 present in
detail an evaluation and an optimisation output of PFIM Interface 4.0.
Lastly, Section 7 shows a list of available examples when downloading PFIM
Interface 4.0.


http://www.pfim.biostat.fr/

2. Methodology

2.1 Design

The elementary design § of individual i (i=1,..,N) is defined by the number
n; of samples and their allocation in time (&, ..., ) -

For N individuals, the population design is composed of the N elementary
designs such as & ={&,..,éy}. Usually, population designs are composed of a
limited number O of groups of individuals with identical design §; within
each group, performed in a number N; of individuals. The population design
can thus be written as E=={ELAGL"J[5@AQ]}

Individual and Bayesian designs include only one elementary design.

2.2 Nonlinear mixed effects models

A nonlinear mixed effects model, or a population model, 1is defined as
follows. The vector of observations Y; for the individual i (i=1,..,N) is
defined as

Y, =f(6,8) + &,

where the function f defines the nonlinear structural model, 6; is the
vector of the p-individual parameters for individual i, § is the elementary
design of individual i and g is the vector of residual error.

The vector of individual parameters 6; depends on u, the p-vector of the
fixed effects parameters and on b;, the p-vector of the random effects for
individual i. The relation between 6; and (u,b;) can be additive for a
normal distribution of parameters, that is

Hi =u + bi!
or exponential for a lognormal distribution of parameters so that
0; = pXexp(b;).

It is assumed that b;~N(0,2) with £ defined as a pXp diagonal variance-
covariance matrix, for which, each diagonal element Wj j=1,..,p, represents
the inter-individual variability of the fh component of the vector b;.

It is also supposed that g~N(0,X;), where X; is a n;Xn;-diagonal matrix such
that

ZL' (ru' bi' Ointers Uslope' El) = diag(o-inter + Gslope Xf(ei: Ei))z .

The terms Ojpter and Ogepe are the additive and proportional parts of the
error model, respectively. Conditionnally on the value of b;, it is assumed
that the g errors are independently distributed.

In the case of K multiple responses, the vector of observations Y; can then
be composed of K vectors for the different responses:

Y = Vv - yiklT



where Vi, k=1,..,K, is the vector of ny observations for the k" response.
Each of these responses 1is associated with a known function f;, which can
be grouped in a vector of multiple response model F, such as

F(6,8) = [f1(6u,¢1)". f2(61,8:)", os fic (81, Eu)™TT,

where § 1is composed of K sub-designs such that & = (&q,&0m, ...,&k). The sub-
design & is then defined by (qkbtmp"”tMnm), with n; sampling times for the
observations of the k™ response, so that ni==Z§=1nm.

Each response can have its error model and g 1is then the vector composed of

the K vectors of residual errors g, k=1,..,K, associated with the K
responses.

2.3 Fisher information matrix

2.3.1 Population Fisher information matrix

The population Fisher information matrix MF(qgg) for multiple response

models, for an individual with an elementary design %, with the vector of

population parameters ¥, is given as:

v (g2 L AEV) CEV)
& 'é)ZE[CT(E,V) B(E,V)j

with E and V the approximated marginal expectation and the variance of the
observations of the individual. The vector of population parameter Y is
defined by ¥T =T, A") with u the p-vector of the fixed effects and A the
vector of the variance terms. Mp is given as a block matrix (more details
are given in [7-9]) with:

.
(A(E,V))m|:2aE V’la—E+tr(a—VV’la—VV’1) with m and I=1...,p
Oty Oy Oty Ot
(B(E,V))mlztr(%V'l%V‘l) with m and I=1...,dim(Z)
N LV , .
(C(E,V))m.=tr(av 1%v Y with I=1..dim(1) and m=1..p

oV )
If the dependence of V in u 1is neglected so that E;—:O, the population
1
Fisher information matrix is a block diagonal matrix that is to say the
block C of the matrix is supposed to be 0. Also, the block A is simplified
and expressed as:

)
(AENV )y =25V 2=

Hin aﬂl

with m and I=1...,p



Since PFIM Interface 3.1, the user can choose to compute either a full or a

block diagonal matrix for population designs. However, based on
publications showing the Dbetter performance of the Dblock diagonal
expression compared to the full one with linearisation [2], the default

option in PFIM is the block diagonal information matrix.

Prediction of standard errors

According to the inequality of Cramer-Rao, the inverse of My is the lower
bound of the wvariance-covariance matrix of any unbiased estimate of the
parameters. From the square roots of the diagonal elements of the inverse
of My, the predicted standard errors (SE) for estimated parameters can be
calculated.

2.3.2 Bayesian Fisher information matrix

New feature: The new version 4.0 of PFIM Interface -enables design
evaluation and optimisation for maximum a posteriori estimation of
individual parameters based on the Bayesian Fisher information matrix [6].

We are interested in the precision estimation of individual parameters for
a subject 1, associated to the wvector of observation y (index 1 being

omitted). These individual parameters can be estimated by maximum a
posteriori (MAP). As pu is known, estimating 6 is similar to estimating 7.
More precisely, the MAP estimate of 1 is given by

Py 1 1) P
p(y)
where p is the probability density. The Bayesian Fisher information matrix,
taking into account the a priori distribution of the random effects, is

expressed as

@ = _Eq(aQ Log(p@ | y))j _ —EW[EH(az Llog(p(y | 77))D ~ En(az 1og(p(77))J

ﬁ = argmax (p(n | y)) = argmax [ ] = argmax (log (p@/l UD + log Qﬂn»)

onon’ onon’ onon’
= En(MIF<g(/ur m ., 5)) -Q

0 lo o . o .
wherezwnxe,g):: -F Q(FKZ | » , expression of the individual Fisher
7 0600
information matrix in classical nonlinear regression models. The

expectation E%CWH(gUL ﬂ),f» can be obtained by first order approximation

of the model around the expectation of random effects (i.e., 0).

The shrinkage (Sh) is quantified from the ratio of the estimation variance
predicted by Mg ' and the a priori variance, and can be calculated as the
diagonal elements of the matrix T — w(¢é) = M, &) QF (see [6] for more

details).

QWhen a parameter has an a priori variance equal to 0, it will be
considered as fixed to the mean wvalue and no predicted shrinkage will be
computed.

10



2.4 Design evaluation

Population, individual and Bayesian design evaluation is Dbased on the
computation of the population, individual and Bayesian Fisher information
matrix, respectively. During this process, the expected standard errors on
the population or individual parameters with the design are evaluated. The
user can choose to fix one or several parameters in the model that will not
be computed in the Fisher information matrix.

Eigenvalues and conditional number are given by default. When considering
design for Bayesian estimation of individual parameters, the shrinkages are
also reported.

The computed Fisher information matrix can be saved in a file if requested.

2.5 Design optimisation

PFIM Interface 4.0 allows to optimise exact or a statistical designs. In
the case of an exact optimisation, the group structure of the design 1is
fixed: the number of elementary designs, the number of samples per
elementary design and the number of subjects per elementary design are
given and the design variables to optimise are only the sampling times. In
the case of statistical optimisation, the sampling times (number and
allocation) and the proportions of subjects in each elementary design are

optimised.
PFIM 1Interface 4.0 optimises population design using the D-optimal
criterion, i.e. maximising the determinant of the population Fisher

information matrix, or, similarly, minimising its inverse.

The Fedorov-Wynn algorithm and the Simplex algorithm are available to
design optimisation. Compared to the Simplex algorithm, the Fedorov-Wynn
algorithm better affords high design variables optimisation. Moreover, it
considers only pre-specified sampling times, avoiding, clinically
unfeasible sampling times. The drawback is the huge number of elementary
designs to be created (with corresponding huge number of Fisher information
matrices to compute) when the set of allowed sampling times is very large.

2.5.1 Simplex algorithm

The Simplex algorithm optimises statistical or exact designs in constrained
intervals, given a total number of samples.

An initial population design needs to be supplied to start the
optimisation. The maximum number of elementary designs and the number of
sampling times per elementary design are fixed, the sampling times and the
proportions of subjects in each elementary design are then optimised. From
this initial design, initial vertices for the simplex algorithm are
derived, reducing successively each component by 20% (a default value which
can be changed) from the original component.

PFIM Interface 4.0 uses the Splus function “fun.amoeba” from Daniel Heitjan
(revised 12/94), which is a translation from the Numerical Recipes for
Nelder and Mead Simplex function [10].

2.5.2 Fedorov-Wynn algorithm

The Fedorov-Wynn algorithm is specifically dedicated to design optimisation
problems and has the property to converge towards the D-optimal design [11-
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13]. It optimises statistical designs for a given total number of samples.
The sampling times are chosen among a given finite set of times. Minimum
and maximum numbers of samples per subject are specified.

To start the algorithm, an initial population design is then required.

The Fedorov-Wynn algorithm is programmed in a C code and is linked to PFIM
Interface 4.0 through a dynamic library, called 1ibFED.dll and 1ibFED64.dl1l
for R 32-bit and 64-bit respectively. Moreover, PFIM Interface uses the
function combn in the R package “combinat”.

New feature: The best one group protocol, which maximises the determinant
of the elementary Fisher information matrix of all elementary protocols
chosen among the predefined set of samples, 1is given by default when
running Fedorov-Wynn algorithm (before calling the dynamic library). This
is the optimal protocol for individual design and Bayesian design.

Moreover, in PFIM Interface 4.0, optimisation with Fedorov-Wynn algorithm
can be performed assuming that some sampling times are fixed.

12



3. Models

Models in PFIM Interface 4.0 can be specified either through their
analytical form or as a solution of system of differential equations. PFIM
Interface provides libraries of models (see Section 3.1), and users may
also define their own model analytically or using a system of differential
equations (see Section 3.2).

The PFIM Interface 4.0 library implements R expressions or differential
equation systems for PKPD models. The PK model library includes one, two
and three compartment models with linear elimination and with Michaelis-
Menten elimination. The PD model library supports immediate response models
(alone or 1linked to a pharmacokinetic model) and the turnover response

models (linked to pharmacokinetic model). These libraries have been derived
from the PKPD library developed by Bertrand and Mentré for the MONOLIX
software, and all analytical expressions are in that document [14]. A

documentation of PKPD models for PFIM Interface 1is available when
downloading PFIM Interface 4.0. Presently, there is no model with lag time
in the library.

New feature: In the previous versions of PFIM Interface, a user-defined
model given 1in analytical form needed to be specified through an R
expression. An alternative way to write the model is now available, through
an R function with a specific format (see section 3.2.3).

3.1 Library of models

3.1.1 Library of pharmacokinetic models

Two types of PK models can be used in PFIM Interface 4.0, PK models with a
first order linear elimination or PK models with a Michaelis-Menten
elimination. The PK models with a linear elimination are written using an
analytical form through an R expression whereas the PK models with a
Michaelis-Menten elimination are written using a differential equation
system.

The following sections show the list of models for each type of PK model in
separate tables. These tables display all the information in order to use
the model function chosen. The model is described by:

- a name

- the type of input

- the type of elimination

- the number of compartments

- the parameters used (parameterisation)

- the type of administration (sd : single dose, md: multiple dose,
ss: steady state) depending on administration type, additional
variables may be required. They are specified in the arguments (N:
number of doses, tau: interval between two doses, TInf: duration
of the infusion, dose: dose)

For models with infusion, the user has to specify the duration of infusion
(TInf) in the needed wvariables. The rate of infusion is computed
automatically in the function model by the expression: dose/TInf. The dose
has to be specified in the tab design (see section 5.4).

For example, if one uses after a multiple dose administration, the first

order oral absorption with one compartment model (orall lcpt kaVCl md) from
the 1library which has three parameters (ka, Cl and V) and two needed

13



variables (N, tau), the number of doses (N) and the interval between two
doses (tau) have to be specified.

Pharmacokinetic models with a linear elimination

The library of PK models with linear elimination is composed of one, two
and three compartment models for the three types of input (bolus, infusion
and first order oral absorption) and the three types of administration

(single dose, multiple dose, steady state).

The list of these PK models is given in Table 1.

14



Table 1. Pharmacokinetic models with first order linear elimination included in the library of models

Name Input Cpt Elimination Parameterisation Administration Arguments

sd -
bolus_lcpt Vk IV-bolus 1 lst order VvV, k md N, tau

ss tau

sd -
bolus_lcpt VC1l IV-bolus 1 lst order VvV, Cl md N, tau

Ss tau

sd TInf
infusion_lcpt_Vk IV-infusion 1 1lst order VvV, k md TInf, N, tau

ss TInf, tau

sd TInf
infusion_ lcpt VC1 IV-infusion 1 1lst order vV, Cl md TInf, N, tau

ss TInf, tau

sd -
orall lcpt_kaVk 1lst order 1 1lst order ka, V, k md N, tau

Ss tau

sd -
orall 1lcpt_kaVCl 1lst order 1 1lst order ka, VvV, Cl md N, tau

ss tau

sd -
bolus_2cpt Vkkl2k21 IV-bolus 2 1st order Vv, k, k12, k21 md N, tau

ss tau

sd -
bolus 2cpt_C1lviQv2 IV-bolus 2 1st order cl, v1, Q, V2 md N, tau

ss tau

sd TInf
infusion 2cpt Vkk1l2k21 IV-infusion 2 1st order v, k, k12, k21 md TInf, N, tau

ss TInf, tau

15



sd TInf
infusion_ 2cpt_ ClV1QV2 IV-infusion l1st order md TInf, N, tau

ss TInf, tau

sd -
orall 2cpt_kaVkkl2k21 lst order lst order md N, tau

Ss tau

sd -
orall 2cpt_kaClv1Qv2 lst order lst order md N, tau

Ss tau

sd -
bolus 3cpt Vkk12k21k13k31 IV-bolus 1st order md N, tau

Ss tau

sd -
bolus 3cpt C1lV1QlVv2Q2V3 IV-bolus 1lst order md N, tau

Ss tau

sd TInf
infusion_3cpt Vkk12k21k1l3k31l IV-infusion lst order md TInf, N, tau

ss TInf, tau

sd TInf
infusion_ 3cpt_ ClV1Q1V2Q2V3 IV-infusion 1st order md TInf, N, tau

ss TInf, tau

sd -
orall 3cpt kaVkkl2k21k13k31 1st order lst order md N, tau

SES] tau

sd -
orall 3cpt_kaClv1Qlv2Q2v3 lst order lst order md N, tau

Ss tau

16



Pharmacokinetic models with a Michaelis-Menten elimination

One, two and three compartment models are implemented for the three types
of input. For bolus input, only single dose models are implemented. For
infusion and first order absorption input, single dose and multiple dose
are implemented. There 1is no steady-state form for PK models with
Michaelis-Menten elimination (in this case the user can use a multiple dose
model with enough doses to reach SS). The list of these PK models is given
in Table 2.

QFor models with a bolus input, the dose has to be specified in the tab of
the ODE variables (see section 5.3) as the 1initial condition of the
differential equation system. For models with infusion or first order
absorption input, dose has to be specified as an argument and NOT IN THE
INITIAL CONDITION OF THE MODEL IN THE ODE VARIABLE TAB.

@ As the dose is an argument, it is not possible to specify different
doses per group for models with infusion or first order absorption input.
All groups of the design considered have the same dose. Otherwise, the user
should use the user defined model option.

17



Table 2. Pharmacokinetic models with Michaelis-Menten elimination included in the library of models

Name Input Cpt Elimination Parameterisation Administration Arguments
bolus_lcpt VVmkm IV-bolus 1 Michaelis-Menten V, Vm, km sd -
. . . . . . sd doseMM, TInf
infusion lcpt VVmkm IV-infusion 1 Michaelis-Menten V, Vm, km
- - md doseMM, TInf, tau
) ) sd doseMM
orall lcpt kaVVmkm lst order 1 Michaelis-Menten ka, V,Vm, km
- - md doseMM, tau
bolus_2cpt Vk12k21Vmkm IV-bolus 2 Michaelis-Menten '/ K7 KZL/ VM4 -
bolus 2cpt V1QV2Vmkm IV-bolus 2 Michaelis-Menten Z;’ Q, Ve, vm, sd -
sd doseMM, TInf
infusion 2cpt Vk12k21Vmkm IV-infusion 2 Michaelis-Menten vy klz, ka2l vm,
- - km md doseMM, TInf, tau
sd doseMM, TInf
infusion 2cpt V1QV2Vmkm IV-infusion 2 Michaelis-Menten Vi, Q. vz, vm,
- - km md doseMM, TInf, tau
sd doseMM
orall 2cpt kaVk12k21Vmkm lst order 2  Michaelis-Menten X2s V¢ K12, k21,
! - Vm, km md doseMM, tau
sd doseMM
orall 2cpt kaV1QV2Vmkm 1st order 2 Michaelis-Menten ka, Vi, Q, vz,
_ A Vm, km md doseMM, tau
bol 3cpt Vk12k21k31k13Vmkm IV-bol 3 Michaelis-Ment vy kl2, k2L, d -
olus 3cpt_ olus ichaelis-Menten k13, k31, Vm, km S
bolus_3cpt_ V1Q1V20Q2V3Vmkm IV-bolus 3 Michaelis-Menten z;’ 8;’ Zi’ 02, sd -
infusi 3cpt Vk12k21k13k31lVmkm IV-infusi 3 Michaelis-Ment vy kl2, k2l sd doselMM, TInt
infusion_3cpt infusion ichaelis-Menten k13, k31, Vm, km md doseMM, TInf, tau
. . . ) , , v1l, Q1, V2, Q2, sd doseMM, TInf
infusion 3cpt V1Q1lV2Q2V3Vmkm IV-inf 3 Michaelis-Menten
_3cpt_V1Q Q Hhtusion Tenas V3, Vm, km md doseMM, TInf, tau
sd doseMM
orall 3cpt kakl1l2k21k13k31Vmkm 1st order 3 Michaelis-Menten ka, klz, k21,
— A k13, k31, Vm, km md doseMM, tau
. . ka, V1, Q1, V2, sd doseMM
orall 3cpt kav1Qlv2Q2V3Vmkm lst order 3 Michaelis-Menten
—>CPh_ 2 2 Q2, V3, Vm, km md doseMM, tau
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3.1.2 Library of pharmacodynamic models

The library of PD models supports immediate response models (either as a
function of observed concentrations, or linked to a pharmacokinetic model)
and turnover response models (linked to pharmacokinetic models).
The following tables present these models, giving the following elements
for each drug model:

- the name of the model function in the library

- the parameters used (parameterisation)

Immediate response pharmacodynamic models alone

Linear, quadratic, logarithmic, Emax, sigmoid Emax, Imax, sigmoid Imax
models with null or constant baseline are available. The 1list of these
models is given in Table 3.

These models are written in closed form and can be used in the case of a
model with one response (PD evaluation or optimisation).

For these models, the design variables are the concentrations or the doses
instead of the sampling times.

For example, if one uses a linear drug action model with a constant
baseline (immed lin const) from the library, the model uses two parameters
(Alin, SO).

Pharmacodynamic models linked to pharmacokinetic model

In this section, we consider models with two responses, with one response
for the PK and the other one for the PD. We thus optimise sampling times
for both responses using a PK/PD model. Using the libraries of models, we
have four cases to compose the PK/PD model depending on the form for each
submodel: either with an analytical form (AF) or a differential equation
system (ODE) .

Therefore, there are four cases of PK/PD models in PFIM library:

1. PK model with linear elimination (AF) and immediate response PD
model (AF)

2. PK model with linear elimination (AF) and turnover response PD
model (ODE)

3. PK model with Michaelis-Menten elimination (ODE) and immediate
response PD model (AF)

4. PK model with Michaelis-Menten elimination and turnover response
PD model (ODE)
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Table 3. Immediate response pharmacodynamic models included in the PD library for PD alone and for PK/PD model

Drug action
models

Linear
Quadratic
Logarithmic
Emax

Sigmoid Emax
Imax

Sigmoid Imax

Baseline

Null baseline

Constant baseline

Name Parameterisation Name Parameterisation
immed lin null Alin immed lin const Alin, SO

immed quad null Alin, Agquad immed quad_const Alin, Agquad, SO
immed log null Alog immed log const Alog, SO

immed Emax_ null Emax, C50 immed_Emax_const Emax, C50, SO0
immed_gammaEmax null Emax, C50, gamma immed_gammaEmax_const Emax, C50, gamma, SO
immed Imax_ null Imax, C50 immed_Imax_const Imax, C50, SO

immed gammaImax null Imax, C50, gamma immed gammaImax const Imax, C50, gamma, SO
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To use PFIM Interface for design evaluation and optimisation for a PK/PD
model, the two models must be in the same format.

In the first case, immediate response pharmacodynamic models are written
with an analytical form and thus they can be associated to pharmacokinetic
models with first order linear elimination (Table 1) which are also written
with analytical forms. In this case, the user has to complete the tab using
analytical form options.

However, for the three other cases, the PK response and the PD response are
written either with different forms or both with a differential equation
system (Case 4). That is why, PFIM Interface 4.0 calls a specific function
in order to create a system of differential equations describing the
corresponding PK/PD model.

For these cases, the user has thus to complete the tab of the ODE variables
(section 5.3.3).

The 1list of the immediate response PD models is thus given in Table 3 plus
those of Table 4. The list of the turnover response PD models is given in
Table 5.
For the second case where a PK model with linear elimination is associated
to a turnover PD response model, the PK model is written with a
differential equations system. Consequently, only some PK models from the
Table 1 are implemented:

- for bolus input, only single dose models;

- for infusion input, single dose and multiple dose

- for first order absorption input, single dose and multiple dose\\

?For models with a bolus input, the dose has to be specified in the tab of
the ODE variables (section 5.3.3) as the initial condition of the
differential equation system. For models with infusion or first order
absorption input, dose has to be specified as an argument. Consequently, it
is not possible to specify different doses per group for models with
infusion or first order absorption input. All groups of the design
considered have the same dose. Otherwise, the user should use the user
defined model option.
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Table 4.

Immediate response pharmacodynamic models linked to a pharmacokinetic model included in the library*

Drug action

Baseline/disease models

models Linear progression Exponential increase Exponential decrease
Name Param. Name Param. Name Param.
Linear immed lin 1lin Alin, S0, immed lin exp Alin, SO, immed lin dexp Alin, S0,
— — kprog - — kprog - - kprog
) Alin, .
Quadratic immed quad 1lin Alin, Aquad, immed quad exp Aquad, SO0, immed quad dexp Alin, Aquad,
- - S0, kprog - - - - S0, kprog
kprog
Logarithmic immed log lin Alig;ozo’ immed log_exp AlEEQOSO' immed log_dexp Alig;ozo’
Emax immed Emax lin iiixkgﬁig immed Emax exp iiixkgﬁig immed Emax dexp iiixkgiig
Siamoid Emax, C50, Emax, C50, Emax, C50,
g;ax immed gammaEmax lin gamma, SO, immed gammaEmax_exp gamma, SO, immed gammaEmax_dexp gamma, SO,
kprog kprog kprog
. . Imax, C50, . Imax, C50, . Imax, C50,
Imax immed Imax lin S0, kprog immed Imax_ exp S0, kprog immed Imax dexp S0, kprog
Siamoid Imax, C50, Imax, C50, Imax, C50,
£;ax immed gammaImax lin gamma, SO, immed gammaImax exp gamma, SO, immed gammaImax dexp gamma, S0,
kprog kprog kprog

* In addition to those in Table 3.
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Table 5.

Turnover response pharmacodynamic models linked to a pharmacokinetic model

included in the library

Types
of
response

Emax
Sigmoid
Emax
Imax
Sigmoid
Imax
Full
Imax?
Sigmoid
full
Imax?

Models with impact on the

Input

Output

Name

Parameterisation

Name

Parameterisation

turn input Emax
turn_ input gammaEmax
turn input Imax
turn input gammalmax

turn input Imaxfull

turn input gammaImaxfull

Rin, kout, Emax, C50
Rin, kout, Emax, C50, gamma
Rin, kout, Imax, C50

Rin, kout, Imax, C50, gamma

Rin, kout, C50

Rin, kout, C50, gamma

turn output Emax
turn output gammaEmax
turn output Imax

turn output gammalmax

turn output Imaxfull

turn output gammalmaxfull

Rin, kout, Emax, C50
Rin, kout, Emax, C50, gamma
Rin, kout, Imax, C50

Rin, kout, Imax, C50, gamma

Rin, kout,C50

Rin, kout, C50, gamma

2 Full Imax

means Imax is fixed equal to 1
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3.2 User-defined models

Users can also define their own model, analytically (as an R expression or
an R function) or using a system of differential equations. A file has to
be created according to each model form (see Section 5.3.2).

3.2.1 Analytical form defined through an R expression

Description

The model file must start with the three following red lines, without any
space between each line; moreover they have to start with the key symbol
“#$” to be understood by PFIM.

#SModel definition
#S$ka, VvV, Cl

#$

formA <-expression()
form<-c (formA)
tf<-1list (Inf)

The first line cannot be changed. The second line indicates the names of
the parameters of the model to be estimated. The third line specified the
argument (s) when a function is specified on the fourth line.

The user must start to specify the model from the fourth line. Here only
“#$” is written on the third line (no additional argument to be specified
since the model equation is given directly using the R function
“expression” on the fourth line.

In case of analytical form, the model for each response should be written
assigned in an object called ‘formi’ where i is the letter of the alphabet
A,B,C,... The “formi” for all the responses are then grouped in a vector
called “form”:

form<-c (formA, formB, formC, ..)

If the model for a response 1is defined over intervals by different
expressions, each response should be written as a vector of expressions.
Each expression can be defined in an object ‘formI’, where I =1, 2, 3,...
For example, 1if the user wants to give three expressions for the first
response, he can write as follows:

formA<-c (forml, form2, form3)

formA can be a model of the PFIM libraries or defined by the user.

User also needs to define an object “tf” which indicates the time until
when to use the model for the expression forml. “tf” has to be a list of
objects corresponding to “tf” for each response. The length of “tf” must be
equal to the number of responses. In case of one response model, using one
expression defined from 0 to Infinity:

tf<-c (Inf)
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Example 1l: Single response model at steady-state in analytical form using
an R expression

#SModel definition

#5k, vV

#35

formA <-expression(l/(V)/(l-exp(-k*24))* (exp(-k*t)))
form<-c (forma)

tf<-1list (Inf)

The analytical expression in this example describes a one compartment model
after IV Dbolus at steady-state, with a dose interval equal to 24h

(bolus 1lcpt Vk). In this case, if the dose is not equal to 1, the user has
to specify the variable “dose” in the expression and the value of the dose
in the design tab (see section 5.4). However, 1if the user defines his

model, he can also specified the value of the dose in the analytical
expression by replacing 1 by 500 for instance for a dose equal to 500. In
this case, the user has to put in the design tab the dose equal to 1. If
the dose is defined by the user in the analytical expression of the model,
the options of design with multiple groups with different doses can no
longer be used. The “tf” object indicates the time until when to use the
specified expression for the model (here, time Infinity).

Example 2: PK model with a linear elimination and immediate response PD
model in analytical form using an R expression

#SModel definition

#$ka,Vv,Cl,Imax,C50,S0

#35

formA<-expression (dose/V*ka (ka- (Cl/V))* (exp (- (Cl/V)*t)-exp(-ka * t)))
formB<-paste ("-Imax*", formA,"/ (C50+",formA,")+S0")

formB<-parse (text=formB)

tf<-list (Inf,Inf)

form<-c (formA, formB)

These analytical expressions describe a PK/PD model. The PK model is a one
compartment model with a first order absorption and elimination (formA) and
the PD model (formB) is an immediate response model with a constant
baseline. In this case, the user has to specify the dose in the design tab
(see section 5.4).

Note that to write formB, we use the R function paste which converts its
arguments to character strings and concatenate them. The R function parse
is used in order to obtain an expression of the model.

The “tf” object indicates the time until when to use the model for the PK

(here, time Infinity) and until when to use the PD model (here, time
Infinity). Here, “tf” is thus a list of two elements.

“form” is the vector of the models for all responses, and the second object
is “tf”.
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Example 3: PK model after multiple dose administration using an analytical
form, based on functions from the library of models

It is also possible to use the functions of the library of models to create
new models. This is illustrated in the following example.

#SModel definition

#Ska,Vv,k

#s

forml<-oral 1lcpt kaVk() [[1]]
form2<-oral lcpt kaVk md(N=5,tau=12) [[1]]
formA<-c (forml, form2)

tf<-list(c(1l2,Inf))

form<-formA

In this illustration, the user creates a model combining two analytical
expressions for a one compartment oral absorption: the first expression
corresponds to the model after the first administration (forml) and the
second expression corresponds to the model after the fifth administration
(form2) . Use of predefined functions of the library of models implies the
use of “[[1]]” at the end of the call of the function to select the part of
the function corresponding to the expression of the model.

The “tf” object indicates the time until when to use the model for the
first administration (here, time 12) and until when to use the model for
the fifth administration (here, time Infinity).

Then, the user defines two objects: the first object is “form”, the vector
of the models, and the second one is “tf”.

This case 1is useful for evaluation and optimisation of a design including
sampling times after the first and the fifth administration.

If the user defines the model by using the library of model, he has to
specify the dose in the design tab (see section 5.4).

Example 4: PK model with a linear elimination and immediate response PD
model in analytical form, based on functions from the library of models

This example illustrates how to write a PK/PD model wusing functions
implemented the PKPD library.

#SModel definition
#$ka,Vv,Cl,Imax,C50,S0

#3

formA<-orall lcpt kaVC1l() [[1]]
formB<-immed Imax const(formaA) [[1]]
tf<-1list(Inf, Inf)

form<-c (formA, formB)
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3.2.2 Analytical form defined through an R function

Description

The R function for a PFIM Infertace 4.0 model should take the following
form:

#SModel definition

#$ ka,k,v

#$
form<-function(t,p,X) {

}

The four lines in red have to be written, without any space between each
line; moreover the three first lines have to start with the key symbol “#$”
to be understood by PFIM. The first line cannot be changed. The second line
indicates the names of the parameters of the model to be estimated. The
third line specified the additional argument(s) of the function. Here there
is no additional argument except except t, y and p which are default
arguments. Therefore only “#$” 1is written on the third line. Last, the
fourth line indicates the name of the function (form) which must remain
unchanged. The 3 arguments of the function are:

- a vector of times t

- a vector of parameters p

- a scalar X which represents the dose

The function returns a vector of predictions of each time point in ¢t,
computed using the dose X and the parameters p.

Example 5: PK model after single dose administration using an analytical
form with user-defined R function

#SModel definition

#$ ka,k,v

#35

form<-function(t,p,X) {

ka<-p[1]

k<-p[2]

V<-p[3]

y<- (X/V*ka/ (ka-k) * (exp (-k*t) —exp (-ka*t)))
return (y)

}

In this example, the user creates a function of a one response model
describing a one compartment oral absorption.
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Example 6: PK model after multiple dose administration using an analytical
form with user-defined R function

#SModel definition

#$ ka,Vv, Cl

#35
form<-function(t,p,X) {
ka<-p[1]

V<-p[2]

Cl<-p[3]

N<-5
tau<-12

y<-0
for (n in 1:N)
{
indic<-t>=(n-1) *tau
yn<-indic* (X/V*ka/ (ka-Cl/V) * (exp(-C1/V*(t - (n - 1) * tau))-exp(-ka*(t -
(n - 1) * tau))))
y<-y+yn
}
return (y)

}

In this illustration, the user creates a function of one response model
describing a one compartment oral absorption after five administration
doses with a between dose interval equal to twelve hours. The number of
doses and the between dose interval are defined within the function.

3.2.3 Models defined through a differential equation system

Description

Model defined as a solution of a differential equation system must be
called “formED”. It can be given by the users who need to write an R
function in a format suitable for the solver package deSolve, using the
following form:

#SModel definition ODE

#S$ka,km,Vm,V

#3$

formED<-function(t,y,p)
{

}

The four lines in red have to be written, without any space between each
line; moreover, the three first lines have to start with the key symbols
“#$”. The first line of this Block, ‘#$Model definition ODE’ cannot be
changed. The second line indicates the names of the parameters of the model
to be estimated. The third line specified the additional argument (s) of the
function. Here there is no additional argument, except t, y and p which are
default arguments. Therefore only “#$” is written on the third line. Last,
the fourth line indicates the name of the function (formED) which must
remain unchanged. The 3 arguments of the function are:
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- a vector of time t
- the current estimate of the variables in the ode system y
- a vector of parameters p

Within the function, the user has to define the name of the parameters in
vector p and the differential equation system.

The function returns a list with 2 elements:
- the first element is a vector giving the values of the derivatives
for each equation in the differential equation system, computed
for each time point in t using the parameters p
- the second element is a vector of predictions computed for each
time point in t wusing the parameters p; in PFIM, this vector
contains the response(s) we are observing

The initial wvalues of the system have to be specified in the ODE tab
presented in the section 5.3.3.

The implementation of differential equations system requires the use of the
lsoda function included in the library “deSolve” (R. Thomas Petzoldt) and
of the fdHess function included in the library “nlme” developed by Jose
Pinheiro and Douglas Bates.

The lsoda function uses a function of the same name written in Fortran by
Linda R. Petzold and Alan C. Hindmarsh. This function solves system of
differential equations using the Adams method, a predictor - corrector
method for non-stiff systems; it uses the Backward Differentiation Formula
(BDF) for stiff systems. The fdHess 1is used for numerical derivation. It
evaluates an approximate gradient of a scalar function wusing finite
differences.

Example 7: Single response PK model using a differential equation system
created by the user

#SModel definition ODE
#Ska,km,Vm,V
#$
formED<-function(t,y,p)
{
ka<-p[1]
km<-p[2]
Vm<-p[3]
v<-p[4]

ydl<--ka*y[1]
yd2<-+ka*y[1l]- V * (Vm * y[2]/(V * km + y[2]))

list(c(ydl,yd2) ,c(y[[2]11/V))
}

This example describes a one compartment model first order absorption and
Michaelis-Menten elimination.

The first four lines in the body of the function assign model parameters
from the vector p. The next two lines describe the derivatives of the
system (ydl and yd2). More specifically, each derivative represent the drug
concentration in the specific compartment at the instant t, and its
elements can be either positive or negative. The notation ydX denotes the
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derivative of the variable in compartment X while the notation y[X] denotes
the quantity in the same compartment (see

documentation for the deSolve package for details).The last line defines
the elements returned by the function:

- the first item is mandatory for the deSolve package, and should
always consist of a vector with the derivatives of the system
(here, the two elements ydl and yd2)

- the second item defines the response, here the concentration in
the second (central) compartment which is defined by the quantity
in this compartment (y[2]) divided by the volume of distribution
V. Several responses can be given.

Example 8: Multiple response PK model using a differential equation system
created by the user

#$Model definition ODE
#$ka,cl,v,Clm,R
#35
formED<-function(t,y,p)
{
ka<-p[1]
cl<-p[2]
v<-p[3]
clm<-p[4]
R<-p[5]
ydl<--ka*y[1]
yd2<-ka*y[1l]-cl/V*y[2]-R*y[2]
yd3<-R*y[2] -clm*y[3]

list(c(ydl,yd2,yd3),c(y[2]1/V,yI3]))

This example describes a two response model using a differential equation
system. In this case, the second argument of the list is composed of two
objects corresponding to: the first measure of interest 1is the
concentration in the compartment 2 scaled by the volume and the second
measure of interest i1s the concentration in the compartment 3,
respectively.
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Example 9: PK model after multiple dose administration using a differential
equation system created by the user

#SModel definition ODE
#8ka,v, C1
#$
formED<-function(t,y,p)
{

ka<-p[1]

V<-p[2]

Cl <-p[3]

tau<-12
input_orall<-function(ka,V,dose,n, tau,t) {
if (n==0) {return (dose*ka/V*exp (-ka*t))}
else{return(dose*ka/V*exp (-ka* (t-
n*tau) ) +input_orall (ka,V,dose,n-1,tau,t))}
}
n<-t%/%tau
input<-input orall (ka,V,dose,n, tau,t)

dy<--Cl/V*y[1l]+input

list(c(dy),c(y[1]))
}

In this illustration, the user creates a function of one response model
describing a one compartment oral absorption after multiple dose
administration with a between dose interval between two doses equal to
twelve hours. The number of doses and the between dose interval are defined
within the function.
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4. Installation

The R 2.6 or higher and available in Windows operating system (32bits or
64bits) needs to be installed. Depending on the use of PFIM Interface 4.0,
additional packages available in the R library are needed:

to use a differential equation system to describe the model: “deSolve” and
“nlme” packages

to use the Federov-Wynn algorithm: “combinat” package.

An additional package “numDeriv” is needed for the computation of the full
Fisher information matrix and for numerical derivatives of models written
as standard R functions

The easiest way to install packages is directly from the web. To install
the packages deSolve, nlme, combinat and numDeriv, start R and choose the
Packages item from the menu. Choose Install package(s) from CRAN to install
from the web (you will see a list of all available packages pop up --
choose deSolve, nlme, combinat and numDeriv) .

4.1 Windows installation

To install the Windows version of PFIM Interface 4.0, download the
application ‘http://www.pfim.biostat.fr/download/PFIMInterface-4.0-windows-
installer.exe’ available on the webpage www.pfim.biostat.fr. Then simply
double click on this application and click on the button to execute the
program.

To complete the installation of PFIM interface 4.0, follow the different
steps detailed below.
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B Setup | = Bd & Setup |= 52

y
Setup - PFIM Interface Installation Directory [} E

Welcome to the PFIM Interface Setup Wizard. Please specify the directory where PFIM Interface will be installed.

Installation Directory  C:\Program Files (B6)\PFIMInterface-4.0 7=

< Back Next > Cancel [ <Back |[ Mea> ][ cancel |

Figure 1: Click the button “Next” ‘ Figure 2: Indicate the path to
to continue the procedure install the directory files and
click the button next

<
= B Setup LI_M:'
I m
Installi |
nstalling .

Please wait while Setup installs PFIM Interface on your computer.

& Setup L=

Ready to Install

Setup is now ready to begin installing PFIM Interface on your computer.

Instelling
Unpacking C:\Program [...J6)\PFIMInterface-4.0\Programialgofedorovi.0.r

[ <Back |[ Mee> ][ canca | <Back || Nedt»

Figure 3: Click the button « Next » -nge4:The setup is proceeding
To begin the installation

.
& Setup = =

Completing the PFIM Interface Setup Wizard

Setup has finished installing PFIM Interface on your
computer.

<Back Cancel

‘Figure 5: To complete the installation
click on the button “Finish”.
Installation is successful




5. Use
5.1 Main user Interface

Figure 6 shows the screen that appears when the user starts the program

PFIM Interface 4.0.

' PFIM Interface 4.0

Project Run 7
Input files | Mode! | Designl Optimization algorithms | Graph I

Project Name: I

Project location: I

QOutput file Igtdo'_ﬂ r View
Pathto R: |C\Pragram Files\R\R-3.0.2'bin'uc64 T
Output FIM file: I View

Figure 6: PFIM Interface 4.0: initial screen.

The user can either create a new project directory (File/New project) or
load an existing one (File/ Open project) as it is shown in Figure 7.

2 PFIM Interface 4.0

Project ] Run 7

Mew project imization algorthms I Graph |

Open project...

Save project

Save project as...

Quit

Wiew
|
[l Path to R: IC.\Pr\)gmm Files\R'R-3.0.2'bin"x64 Browse |
View

Qutput FIM file: I

== = -]

Figure 7: Load or create a new project.

5.1.1 Creation of a new project

In order to create a new project, the path of the directory for the “New

project” must be specified as shown in Figure 8.
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£ PFIM Interface 4.0 = P

Project Run 7

Input files | Mode! | Design | Optimization algurﬂhmsl Graph |

Project Name: | Rechercher un dossier |A| |
Froject location: [ Select the directory that you want to use for the project.
Output file: [otdout r
Ml Bureau o
Pathto R [C:\Program Files\R\R-3.0.2 1> [ Bibliothéques
Output FIM fle: | 1> % Groupe résidentiel =
A Giulia
&> (8 Ordinateur
3 ‘-j Réseau

1> E Panneau de configuration £
& Corbeille

I+ [ EXAMPLE Zold

1 example_interface 3.1

> | example_interface_3.1_for_Tram <

Créer un nouveau dossier ] [ OK ] [ Annuler

Figure 8: Choose directory for the new project

By default, the names of the new project and of the output file (Figure 9)
are “My Project” and Stdout.r, respectively, but these names can be
modified.

2 PFIM Interface 4.0.0 - My project = =

Project Run 7

Input files | Model I Design | Optimization algorithms | Graph |

Project Name: IM)' project II

Project location: T2\ Users\Guilia\Documents\PFIMinterface-4 0\Examples'.

Output file: |Stdout r View
Pathio R |C:\Program Files\R\R-3.0.2 o
Output FiM file: [ View

Figure 9: Default tab after the creation of a project.
5.1.2 Loading existing project
In order to load an existing project, it is either possible to use the Menu

of PFIM Interface 4.0 as shown in Figure 10, or by clicking on the
stdin.pfim file stored in the directory of the project selected.

35



Project | Run 7

Mew project
Open project...
Save project

Save project as...

Quit

mization algorithms I Graph |

Path to R:

QOutput FIM file:

IC.\F‘rugmm Files\R\R-2.14.2

r o v - b
g 2 anmmne. cmmme D
e Pl e —

Figure 10 Loading existing project tab

T Intertace 40 = @] % |
Project Run 7
Input files IMudeI I Design | Optimization a\gomhmsl Graph |
Project Name: I | 2 ‘
2 Browse for the project to load L J
Project location: o~
& ()~ [0l « evALUATION » EXAMPLEL + 141 = [ %3] [ Rechercher dans 141 i
Output file: [stdout.
el Organiser * Nouveau dossier ==+ ®
Pathto R: - S—
C:Frogram H S Favoris * Nom Modifié le Type
Output FIM file: 8 Téléchargements 4] stdin 29/10/2014 15:43 Fichier PF
Bl Bureau
&l Emplacements ré=
- Bibliothéques
@ Documents
(=] Images
‘Js Musique
2 vidéos
o Groune résidentiel T ¢ | L ‘ s
MNom du fichier: - [PFIM project ']
[ Quvrir Ivl [ Annuler I

5.2

The user should enter a name for the project and specify the name for the
output file where the results will be stored.

Input tab

Figure 11 Browsing project to be loaded tab

The Project location is

created automatically once selected the folder where the new project can be

stored.

in the “Path to R”

section.

The user can choose the R version to be used by specifying the path
It is also possible to require the saving of
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the Fisher Infromation Matrix in a text file by specifying the name of the
text file (“filename.txt”) in the “Output FIM file” section.

5.3 Model tab

This tab is for model specification. A model can be either selected from
the PFIM library or it can be written in a user defined form, using either
analytical form or a system of differential equations (ODE). Below some
figures showing how specify a model in the PFIM Interface 4.0. In the

“Models” section of this documentation, model writings and examples are
reported in more details.

5.3.1 Model from the library

After having opened a project or created a new project in PFIM Interface
4.0 it is possible to select the preferred model from the library of models
using the scroll bar in the model tab (Figure 12) and choose the regimen
(Single dose, Multiple doses, Steady State). For the first example we

selected a PK one compartment first order absorption model, with parameters
ka, V, k, and a single dose regimen.

—_—————— — = ==

-
o =
£2 PFIM Interface 4.0 -

Project Run 7
Input files  Model I Design | Optimization algorthms | Graph |
r—~ Model definition

Model type I Parameters | QDE varizbles |

[ Variables
Mumber of responses 1

I & Library

[l & PKmodel " PD model
PK

|

bolus_Tcpt_Wk
bolus_Tcpt _WCl
infusion_Tept_Vic

infusion_1cpt_VCl
orall_lcpt_kaVCl
infusion_1cpt_Vmkm A
orall_lcpt_kaWVimkm L5l

© User-defined

]

[m

Figure 12: Model-selection from the model library
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Input files  Mode! | Design' Cptimization algorithms | Graph I

[~ Model definiti

Model type | Parameters I

@ Library
&+ PK model

PK IomH_W cpt_kaVCl -

" Single dose
* Multiple doses
" Steady state

" User-defined

Number of responses I 1

' PD model

—Variables

N
=1

=

Figure 13: Specification of multiple doses administration type and specification of

the needed variables N and tau

It is also possible to define a PKPD model through the model library as

shown is Figure 14.

of responses section.

Figure 14:

— —— -
£ PFIM Interface 4.0.0 - My project
e

Please mind to specify the two responses in the number

P
Project Run ?
Input files  Model | Des4gr1| Cptimization algorithms | Graph I
—~ Model definiti
Model type | Parameters I
Mumber of responses I 2

& Library

* Single dose
" Multiple doses
" Steady state

" User-defined

PK Iuraqu)LkaVCl vI FD -

immed_gammalmaz:_nul[ ]
immed_gammalmax_cor
immed_gammalmaz_lin —

15

immed_gammalmax_ex

PKPD model selection from the model library. The PK is a one compartment
first order oral absorption model, with function in the library parameterized in
ka, V k. The PD is an Imax model with constant baseline parameterized in Imax, C50
and SO.
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5.3.2 User-defined model

The user can create either an analytical model or an ODE system (Figure
15). If a user defined model has already been specified in this project, it
can also be edited and modified.

See “Models” section for details on how to write its own model.

2 PFIM Interface 4.0.0 - My project = B

Project Run 7

Input files  Model lDeslgn I Optimization algorthms I Graph ]
Model definition

Mode! type ] Parameters |

Mumber of responses 2

" Library

{+ User-defined Create analytical mod
Create ODE system
Edit mode!

Figure 15: Definition of the model by the user here for a model with two responses

5.3.3 Parameters of the model

Once the model is specified, one can click on the “Parameters” section
(Figure 16), where values of the mean and the variance of the population
parameters have to be defined.

If the between-subject variance of a parameter is assumed to be zero, this
should be specified under the variance column of the related parameter.
PFIM would then remove the corresponding row and column in the Fisher
information matrix. In the parameter tab it is also possible to indicate
whether some parameter should be kept fixed in the evaluation or
optimisation of FIM. In that case, the variance of the correspondent fixed
parameter will be automatically set to O.

In the same tab it 1s possible to choose Dbetween either additive or
exponential model for the between-subject variance.

Values of the standard deviation of the residual error should be specified.
The residual error 1is additive with a general model for variance:
var@ﬁ%chmﬂ+cﬁom*ff, where f is the structural model. This variance error
model includes the constant variance model (651 = 0) or the constant
coefficient of variation model (Ginter = 0) as special cases. The parameters
Ginter @anNd Ogiope are included in the population parameters to be estimated.

Regarding a multiple response model, the user has to complete the different

values for the standard deviation of the residual error for all responses
one by one using the list box (Figure 17).
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Mean IFixed mean Variance
ka 2 1
v 15 r 01
k 025 r 025

Between-subject variance model —Standard deviation of the residual error
’VIEchnemla\ LI
Inter : 05 Slope : 015

Figure 16: Parameters section tab for a single response model

-

(7 PFIM Interface 4.0.0 - My project j— . ==
Project Run 7

Input files  Mode! | Design | Optimization a\gonlhmsl Graph |
[ Model defi

Model type Pammetersl

P! P

1
Mean | Fixed mean ‘ariance
ka 16 r 07
v ] r 00
Cl 013 I 0.06
I Imax 73 r 0.001
CED 017 r 07
Ell 100 r 0

Between-subject variance model Standard deviation of the residusl error
’]Emonentlal | [Fesponse 1 -

! Hegonse 2 : 0.0737

Figure 17: Parameters section tab for a multiple response model with the list box
to choice the parameters of the residual error for each response

In case of an ODE system,

the ODE variables section has to be filled as in
Figure 18.
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initial conditions for each elementary design :

] :‘

Error tolerance for differential equations solver

RiolEQ:  [1e-05 AolEQ ‘15.[}5 Hmax: |||-|{
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Figure 18: Tab of the ODE variables

In this case, the time for the initialisation of the system must be given
(usually 0) and the initial values in each compartment at this time have to
be given as a vector in the “initial conditions for each elementary
design”. The size of this vector has to be equal to the number of equations
of the system. For the models coming from the libraries, the number of
equations of the system is equal to the number of compartments of the
model. Several vectors can be specified in case of different groups of
subjects with different initial conditions.

To use this tab, an example is presented below illustrated in Figure 19
using a system with two equations.
If there are two elementary design with different initial conditions
defined as (13.8; 0) and (15; 0) respectively for the first and the second
elementary design. The size of the vectors for the initial conditions is
equal to 2 due to the two equation system.
To input the initial condition for the first elementary design, the user
has to follow the next instructions with the illustration on Figure 19.
— Put the value 13.8 in the white box (::).
— To validate the wvalue click on the button (::) , the wvalue is in the
box
— Repeat these two previous steps for the value 0.
— Click on the button (::) , the first elementary design is specified
and validated in the box

In order to validate the initial conditions for the second elementary
design defined here 15 and 0, the user has to repeat the previous steps.
The screen showed on Figure 19 should be obtained. The first line and the
second line 1in the Dbox <::) correspond respectively to the initial
conditions for the first and the second elementary design.
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Figure 19: Tab of the ODE variables: illustration to enter the initial conditions

Finally, parameters of “Error tolerance for the differential equation
solver” are set by default but can be changed by the user. Those parameters
are the following:
- RtolEQ: relative error tolerance, either a scalar or an array as
long as 'y'. See details in help for 1lsoda function.
Default value is le-06.
- AtolEQ: absolute error tolerance, either a scalar or an array as
long as 'y'. See details in help for 1lsoda function*.
Default value is le-06
-  Hmax: an optional maximum value of the integration stepsize. A
maximum value may be necessary for non-autonomous models
(with external inputs), otherwise the simulation possibly
ignores short external events. Default value is Inf.

*Copied from help for lsoda:

“The input parameters 'rtol', and 'atol' determine the error control
performed by the solver. The solver will control the vector *e* of
estimated local errors in *y*, according to an inequality of the form max-
norm of ( *e*/*ewt* ) <= 1, where *ewt*is a vector of positive error
welights. The values of 'rtol' and 'atol' should all be non-negative. The
form of *ewt* is:

*RtolEQ* * abs (*y*) + *AtolEQ*

where multiplication of two vectors 1is element-by-element. If the request
for precision exceeds the capabilities of the machine, the Fortran
subroutine lsoda will return an error code,; under some circumstances, the R
function 'lsoda' will attempt a reasonable reduction of precision in order
to get an answer. It will write a warning if it does so.”

5.4 Design tab

In this tab, the wuser specifies the characteristics of the population
design to be evaluated or optimised.

In the Fisher Information Matrix section, the type of Fisher information
matrix to be evaluated or optimised can be selected. Three possible Fisher
information matrices are implemented in PFIM Interface 4.0.: Population

42



(also available in previous versions of PFIM Interface), Individual and
Bayesian.

In the Dose regimen section, the user specifies if the dose is the same or
not for all the involved groups in the population design. If the dose is
the same, its value should be specified; if not, the values for each group
can be defined (Figure 20).

NB: if the model used is a user-defined model in which the dose was
defined, the default value of a dose of 1 should be kept here.

NB2: for models of the library after infusion, total dose should be given
and the rate of infusion will be computed using the needed variable TInf.

In the initial population design section, the user enters, for each group,
the corresponding elementary designs. The value for the number of groups in
the population design is then computed automatically.

The user specifies also if the subjects in each elementary design are given
as numbers or as proportions and enter the values.

Figure 20 shows an example of Design tab for a single response model, for
which the population design is composed of 2 groups of 30 and 90 subjects
respectively, both with dose of 100 and 200, «respectively, with the
sampling times (0.5, 1, 4, 12) and (0.5, 2, 6) respectively.

2 PFIM Interface 4.0.0 - My praject = B9
Project Run ¥
Input h\es] Model Design | Optimization algaorithms I Graph }
Fisher Information Matrix
¥ Population " Individual (" Bayesian
Dose
¥ Specification of doses ‘Nun-idarﬂical dose in each elementary design j

Dose: j [100. 200

Design

Number of groups: 2

Subjects are given as: (% numbers " proportions

Proportions or numbers of subjects per group

[ j [os0

Walues of design varizble

051,412
’_ ﬂ | :‘ 0526

Figure 20: Design tab example for a single response model

Figure 21 provides with an example of Design tab for a two response model
with the same sampling times for Dboth responses. Indeed the Dbutton
“identical design for all responses” is selected.

The population design is composed of one group of 32 subjects with a dose
of 100 and with the same sampling times for both responses (0.5, 1, 4, 12).
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Figure 21:‘Design tab example for a two response model with the same samﬁling times
for both responses

Figure 22 and Figure 23 give an example of Design tab for a two response
model with different sampling times for each response. The Dbutton
“identical design for all responses” has to be unselected.

The population is composed of one group of 32 subjects with a dose of 100
and with the sampling times for the first response (0.5, 1, 4, 12) (Figure
22) and for the second response: (0, 0.5, 12, 48, 120) (Figure 23).

£ PFIM Interface 4.0.0 - My project (E=2E

Project Run 7
Input ﬂlesl Model Design IOpt\m\za(ion algorithmsl Graph |

Fisher Information Matrix |

* Population  Individual " Bayesian
Dose
[V Specification of doses |Identica| dose in each elementary design LI
Dose: Ir
—Design
Mumber of groups: |1—
Subjects are given as: & numbers " proportions

[ Proportions or numbers of subjects per group
| |

—Walues of design variable
[ Identical design for all responses

Response 1 -

nee 1
:| 051412

Figure 22: Design tab example for a two response model with different sampling
times for each response: choice of the design for the first response

44



2 PFIM Interface 4.0.0 - My project =1L
Project Run 7

Input files | Model Design |Omimizaﬁon algorithms | Graph I
Fisher Information Matrix

& Population  Individual " Bayesian |
~Dose
[ Specification of doses |Idarmcal dose in each elemantary design j
bose [0
—Design
Number of groups: |1—
Subjects are given as * numbers " propartions

—Proportions or numbers of subjects per group

e

—Values of design variable
™ Identical design for all responses

Fesponse 2| -

Responss 1 N

Fesponse 2 .| |0.05.12.48 120

Figure 23: Design tab example for a two response model with different éampling
times for each response: choice of the design for the second response

In all these examples (Figure 20 - Figure 23) the requested Fisher
information matrix to be evaluated or optimized is the Population one.

5.5 Design evaluation step tab

At this step, evaluation of the population design entered in the “Design
tab” can be performed by clicking on the ‘Run’ button on the windows
toolbar, following with a click on the ‘Evaluation’ (see Figure 24). See
Section 6 for the output. Evaluation can be performed either using the
expression of the block diagonal Fisher information matrix (Figure 24)

the full expression of the Fisher information matrix (Figure 25).
" £ PAM Interface 400 - My project N

or

==

Project [Run | ?
Input il Graph only algorithms | Graph I
Evaluation 4 Block diaganal Fisher matrix
Optimization 3 Complete Fisher matrix |
Dose
¥ Specification of doses |\dermca\ dose in each elemantary design d
Dose: 100
rDesign
Number of groups: |1
Subjects are given as: * numbers " proportions
—Proportions or numbers of subjects per group
| |
—Values of design variable
™ Identical design for all responses
Response 2| -
] | 0.05.12. 48, 120

Figure 24: How to perform evaluation with the “run” button using the block diagonal
expression of the Fisher information matrix
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Figuré 25: How to perform evaluation with the “run” button using the full
expression of the Fisher information matrix

5.6 Optimisation algorithms tab

This tab must be filled in to optimise a design. The optimisation can be
performed with either the Simplex or the Fedorov-Wynn algorithm.
Corresponding section of the chosen algorithm must be filled in. In the
case of multiple response models, the selection of the button "“identical
design for all responses” on the Design tab allows to optimise the design
with the same sampling times for all responses.

5.6.1 Simplex algorithm

The first option to be chosen is whether optimising or not the proportions
or number of subjects. Then, a value for the minimum delay between two
sampling times can be entered. By default, this delay is set to O.
It is then possible to specify whether the iteration step should be printed
or not in the R command window.
If different optimal sampling times for each response are required, the
allowed intervals of sampling times for the optimisation must be provided
for each response (Figure 26).
Parameters for the Simplex algorithm are set by default but they can be
changed by the user. These are:
- the parameter for the initial simplex building gives the percentage
of change from the initial design to create the initial vertices of
the Simplex algorithm. Default is 20%
- the maximum iteration number of the Simplex algorithm which is set by
default to 5000
- the relative convergence criterion of the Simplex algorithm set by
default to le-6.
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Figure 26: Optimisation algorithms tab for the Simplex algorithﬁ
5.6.2 Fedorov-Wynn algorithm

Allowed sampling times can be specified in the Fedorov-Wynn algorithm
corresponding tab. Several set of allowed sampling times may be provided,
each set being called the sampling interval.

Then, the user must specify the number of sampling times to be taken from
each sampling interval. More flexibility can be given by specifying for
each sampling interval several numbers: the Fedorov-Wynn algorithm will
then select the best ones.

The number of sampling intervals and the total number of samples per
subject are then computed automatically.

The Federov-Wynn algorithm always optimises the number of groups and the
proportions of subjects per group.

Please note that the initial population design given in the “Design” tab
must correspond to the constraint specified in this Fedorov-Wynn algorithm:
the sampling times must be included in the sampling interval and the number
of sampling times from each interval must be concordant with the allowed
numbers.

An example of the Fedorov-Wynn section is given in Figure 27 for a single
response model. In this example, two sampling intervals are specified with
the allowed sampling times (0.5, 1, 2, 3, 4, 6, 8, 10, 12) and (48.5, 49,
50, 51, 52, 56, 58, 60) respectively. The user allowed optimization of a
design with either two or three sampling times in each interval. The
minimal total number of allowed sampling times per subject is then 4 and
the maximum 6.

47



£ PFIM Interface 4.0.0 - My project = il

Project Run 7

Inputﬁlesl Mode! I Design  Optimization algorithms |G|aph |

£ Simplex % Fedorov-Wynn

Fedorov-Wynn algorithm |

—Allowed ing times for each ing interval

=l . |[0572346810.12

48.5.49,50,51.52,56,58 60

—Allowed numbers of points to be taken from each ing interval

[ = | )

23

rFixed times

Al
Mumber of sampling interval |2 Total number of sampling times per subject Min [4 Max [g

Figuré 27: Example of the Optimisation algorithms tab for the Fedorov-Wynn
algorithm for a single response model

An example of the Fedorov-Wynn section is given in Figure 28 and Figure 29
for a two response model. In this example, one sampling interval 1is
specified with the allowed sampling times (0, 0.5, 1, 6, 12, 24, 48, 72,
96, 120, 144) for the first response (see Figure 28) and for the second
response (0, 24, 36, 48, 72, 96, 120, 144) (see Figure 29). The user
allowed optimization of a design with five sampling times in this interval
for each response. The minimal total number of allowed sampling times per
subject i§ then 4 and the maximum 4.
{2 PFIM Interface 4.0.0 - My praject s =5

Project Run ?
Iﬂputﬂles' Model | Design  Optimization algorithms |Gr:|uh |

€ Simplex * Fedorov-WWynn
Fedorov-WWynn algorithm I
Response 1 -
—Allowed ing times for each interval (
I :1 0.05.1.6.12. 24, 48, 72,96, 120. 144
|
[ —Allowed numbers of points to be taken from each ing interval
it IF
|
—Fixed times
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Figuré 28: Example of the Optimisation algorithms tab for the Fedorov-Wynn
algorithm for a two response model: choice for the first response
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Figure 29: Example of the Optimisation algorithms tab for the Fedorov-Wynn
algorithm for a two response model: choice for the second response

5.7 Design optimisation step tab

At this step, optimisation can be performed by clicking on the ‘Run’ button
on the windows toolbar and then choosing ‘Optimization’.

2 PFIM Interface 4.0.0 - My project = [
Project [Run| ?
Iript fil Graph only algorithms |GVE|Dh |
ol Evaluation [ . .
Optimization 3 Block diagonal Fisher matrix
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‘Optimization of proportions or numbers of subjects [j, | Parameter for initizl simplex building IZD—
Minimum delay between two sampling times lu— Maximum iteration number IW
Print iteration step Yes | Relative convergence tolerance -5
Intervals of admissible sampling times I I ;I[[m,“]

Figure 30: How to perform opti}nisation with the ‘run’ button using the e‘xpression
of the block Fisher information matrix
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Figure 31: How to perform optimisation with the ‘run’ buttoﬂ_using the expression
of the complete Fisher information matrix

5.8 Graph tab

Graph of either the model or sensitivity function or both can be requested
by selecting corresponding button(s) (Figure 32). Intervals for the times
(X axis) have to be specified. Intervals for the Y axis are set by defaults
to the range of the concentrations but can be changed.

It is possible to plot a graph with a log scale for X and/or Y axis by
selecting respectively the ‘Log X axis’ button and/or the ‘Log Y axis’
button.

Format of the graph can be either Jjpeg or pdf.

Regarding multiple response models, the user can choose to have a graph for
each response with different scales and different labels. To do that, the
user has to unselect the button entitled "“Identical lower and upper
sampling times for each response”.

5
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Figure 32: Graph tab

50



Please note that graphs of the model or sensitivity function may also be
obtained before performing any design evaluation or optimisation by
clicking the ‘Run’ button on the windows toolbar and then choosing “Graph

only"“ (Figure 33)
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Figure 33: Run graph only

6. Results

PFIM Interface 4.0 opens an R command window to run the evaluation or the

optimisation (Figure 34). At the end, an output file
Stdout.r or with the name specified in the input files tab)

(named by default

is created in

the directory of the project. It can be viewed by clicking on the button

“View output file” in the output R command window.
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Figure 34: Tab of the results with buttons to see the output file and the graph

Regarding optimisation step with the Fedorov-Wynn algorithm, in addition to
the R command windows PFIM Interface 4.0 opens a warning window (Figure 35)
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but as it does not prevent the PFIM Interface to run it can Jjust be
ignored. It will be removed for the next version of PFIM.
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Tapez q() pour quitter R oK

> # Interface 4.0.0 Muttiple responses
Number of § | |>#2011-2014
» 8 Camrinkt © PFIM 4 0 0 - The PFIM Groun - | Iniversité Pars Didert - INSFRM ok

View output file ‘ Show graph | Show sensitivity graph | Close |

Figure 35: Tab of the results with buttons to see the output file and the graph and
a warning window

If any graph was requested, a file called ‘Rplots’ is also created in the

project directory and can be viewed by clicking on the “Show graph” or

“Show sensitivity graph” button in the same output R command window.

The results are also written in the output file named by default stdout.r.

According design evaluation or design optimisation, the following sections

are going to describe the different elements of the output file.

6.1 Evaluation output file and objects

6.1.1 Single response model

Figure 36 represents the output file from the design evaluation as in the
Example 1 - described in the “Examples” section.

The user can read on Figure 36:

<::> The name of the function used: PFIM Interface 4.0.

<::> The name of the project and the date.

<::> A  summary of the input: model, variance error model, residual
between-subject variance model, initial population design, initial numbers
or proportions of subjects and doses, initial conditions values, errors
tolerances for the solver of differential equations system if used and the

expression of the Fisher information matrix used (block or full).

<::> The population Fisher information matrix, a dim*dim symmetric matrix
where dim is the total number of population parameters to be estimated.

<::> The value of each population parameter with the expected standard
error on each parameter and the corresponding coefficient of variation.
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<::> The value of the determinant of the Fisher information matrix and the
value of the criterion (determinant”(1/dim)) where dim is the total number
of population parameters.

<::>The eigenvalues of the Fisher information matrix and the correlation
matrix.

PFIM Interface 4.0

@

Project: Example 1.1 ExpressionMod 1.2.1

Date: Tue May 12 08:16:29 2015

KA Kk hkhkrkkhhkxkkhrxkkhhkrxxkkxx TNPUT SUMMARY **rxdkkhhrxkhkkhrhrkhhhrrkhhrrkkhhrtx

Analytical function models

dose/V * ka/(ka - k) * (exp(-k * t) - exp(-ka * t))
Design:
Sample times for response: A

times subjects doses

5, 12) 200 100

1 c(0.33, 1.5,

>®

Random effect model: Trand = 2

Variance error model response A : ( 0.5 + 0.15 *f)"2

Computation of the Population Fisher information matrix: option = 1

FIM saved in FIM.txt

*Ahkhkkhkkhhkhkkhkkhkhkkkkhhkxkkk*x FISHER INFORMATION MATRIX *kkhk Kk hkhkkhk Kk hkkkkhkkk*k*kx*k j
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 38.467601 82.86694 -3.770151 0.000000 0.000000 0.00000 0.00000 "\

[2,] 82.866939 8310.88576 77.977971 0.000000 0.000000 0.00000 0.00000

[3,] -3.770151  77.97797 4.938229 0.000000 0.000000 0.00000 0.00000

[4,] 0.000000 0.00000 0.000000 59.190253  4.291831  31.98158  28.15946

[5,1 0.000000 0.00000 0.000000 4.291831 674.519747 213.76982 193.67427

[6,] 0.000000 0.00000 0.000000 31.981582 213.769824 3086.36693 295.74230

[7,] 0.000000 0.00000 0.000000 28.159462 193.674273 295.74230 1208.60606

[8,] 0.000000 0.00000 0.000000 85.786235 226.638153 1167.39328 1544.00257
[,8]

[1,] 0.00000

[2,] 0.00000

[3,] 0.00000

[4,] 85.78624

[5,] 226.63815

[6,] 1167.39328

[7,] 1544.00257 _J

[8,] 4118.40001

* Kk kK

R i e I I i I b I e b b b e EXPECTED STANDARD ERRORS R i I I I i I b b I b b b 2 b b
Fixed Effects Parameters

Beta StdError RSE

ka 2.00 0.17480765 8.740383 %

k 0.25 0.01239415 4.957658 %

vV 15.00 0.52291110 3.486074 %

————————————————————————— Variance of Inter-Subject Random Effects ---————--- <::>
omega?2 StdError RSE

ka 1.00 0.13203572 13.20357 % >

k 0.25 0.03977275 15.90910 %

v 0.10 0.01933249 19.33249 %

———————————————————————— Standard deviation of residual error --—----—----—---

Sigma StdError RSE
sig.interA 0.50 0.04077340 8.154681 %
sig.slopeA 0.15 0.02293716 15.291443 %
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KAKX AR KA AA A A AN A A AR A A XA A AR A XX kK DETERMINANT KA KA Ak KNI A AR A A AN A A AR A A XA Ak A A A XAk Kk

2.930397e+20

KA KR KA KA A XA A AR A A AR A A XA A A A A XA,k CRITERION KAK A A A A AR A I A A A A A A A A A A A A A A A Ak K,k

&>

361.7144
FRAA KX A KA KKK AKX A A x FETGENVALUES OF THE FISHER INFORMATION MATRIX *#**x&kkxkkx ~
FixedEffects VarianceComponents
min 2490.782416 3.598669
max 8312.446928 702.614507
max/min 3.337283 195.242884
KAk kkkhkhkkhkhkkhkkkhkkkkkx Kk CORRELATION MATRIX Ak hkkkhkhkhkkhkhkkhkkkxkk*x*k
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.0000000 -0.2836926 0.3614018 0.0000000000 0.0000000000 0.00000000
[2,] -0.2836926 1.0000000 -0.4466787 0.0000000000 0.0000000000 0.00000000
[3,] 0.3614018 -0.4466787 1.0000000 0.0000000000 0.0000000000 0.00000000
(4,1 0.0000000 0.0000000 0.0000000 1.0000000000 0.0008945383 -0.01707708
[5,]1] 0.0000000 0.0000000 0.0000000 0.0008945383 1.0000000000 -0.13147266 >>
[6,] 0.0000000 0.0000000 0.0000000 -0.0170770841 -0.1314726648 1.00000000 <::2
(7,7 0.0000000 0.0000000 0.0000000 0.0186040109 -0.1824110325 0.12863647
[8,]1] 0.0000000 0.0000000 0.0000000 -0.1283097535 0.0574454432 -0.31004589
[,7] [,8]
(1,17 0.00000000 0.00000000
[2,] 0.00000000 0.00000000
(3,17 0.00000000 0.00000000
[4,] 0.01860401 -0.12830975
[5,] -0.18241103 0.05744544
[6,] 0.12863647 -0.31004589
(7,7 1.00000000 -0.68199073
[8,] -0.68199073 1.00000000

4
Figure 36: Example of design evaluation output file for a single response model

Moreover,
dose
prot: design evaluated for each response

subjects: number of subjects for each group

mfisher: the population Fisher information matrix

determinant: the determinant of the population Fisher information matrix
crit: the value of the criterion

p: the vector

se: the vector of the expected standard errors for each parameter

cv: the corresponding coefficient of variation, expressed in persent.
EigenValues: the eigenvalues of the Fisher information matrix
corr.matrix: the correlation matrix

several R objects are returned in the R command window:

6.1.2

Figure 37 represents the output file from the design evaluation as in the
Example 2 described in the “Examples” section.

Multiple response model

The user can read on the Figure 37:
C::D The name of the function used: PFIM Interface 4.0.
C::D The name of the project and the date.

<::> A summary of the input: model(s), sampling times in the elementary
designs for each model(s), doses or initial conditions and subjects

corresponding to those designs,

model (s),
design,

residual

residual variance error model for each

between-subject

variance

model,

initial

population

errors tolerances for the solver of differential equations system

if used and the expression of the Fisher information used

(block or full).
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The figure shows a two responses model (differential equations form) with a
group described by 5 sampling times for both first and secon responses for
100 subjetcs. The dose is equal to 100.

(::) The population Fisher information matrix, a dim*dim symmetric matrix
where dim is the total number of population parameters to be estimated.

(::)The value of each population parameter with the expected standard error
on each parameter and the corresponding coefficient of variation.

(::) The value of the determinant of the Fisher information matrix and the
value of the criterion (determinant” (1/dim)) where dim is the total number
of population parameters.

C::)The eigenvalues of the Fisher information matrix and the correlation
matrix.

PFIM Interface 4.0 (:::)

Project: Example 2

Date: Tue May 12 08:24:26 2015 }> :

KAKk AKX Ak h Ak xkhkhrhxkkhhrxxkkxx TNPUT SUMMARY **xFkkhhrxkkkhrrxdhhhrrkhhrxrkkhhrxxx

Differential Equations form of the model:
function (t, vy, p)
{

V <= p[l]
Vm <- pl[2]
km <- p[3]

Alin <- pl[4]
pk <= y[1l:1]
pd <- y[2:2]
conc <- y[1]
if (£t <= 1) {
dpkl <- (100/(1 * V)) + (-Vm) * pk[1l]/(km + pk[1])
}
else {
dpkl <- (-Vm) * pk[1l]/(km + pk[1])

}

dpdl <- 0

pdIm <- Alin * conc

return (list (c(dpkl, dpdl), c(pk[l], pdIm)))
}
Design: C::)
Sample times for response: A

times subjects

1 c(0.5, 2, 30, 49, 180) 100

Sample times for response: B
times subjects

1 c(0.5, 2, 14, 110, 150) 100

Initial Conditions at time O

00

Random effect model: Trand = 2

Variance error model response A : ( 0 + 0.2 *f)"2
Variance error model response B : ( 0.1 + 0 *f)~2

Error tolerance for solving differential equations system:

RtolEQ = 1e-08 , AtolEQ = l1le-08 , Hmax = Inf

Computation of the Population Fisher information matrix: option = 1
FIM saved in FIM.txt
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*KhkKkkhkkxkkhkrkxxkkrkrxxk FTSHER INFORMATION MATRIX ****x*xkkkhxkkkhhrxkxk

[,1] [,2] [,31] [,4] [,5] )
[1,] 2.6770341 9.444202 -57.39048 -0.7254162 0.000000e+00
[2,] 9.4442023 50919.213161 7982.73905 657.4076389 0.000000e+00
[3,]1 -57.3904833 7982.739050 33057.82792 -6714.1078293 0.000000e+00
[4,] -0.7254162 657.407639 -6714.10783 38772.8151987 0.000000e+00
[5,] 0.0000000 0.000000 0.00000 0.0000000 7.938111le+02
[6,] 0.0000000 0.000000 0.00000 0.0000000 4.463216e-01
[7,] 0.0000000 0.000000 0.00000 0.0000000 3.916193e-03
[8,] 0.0000000 0.000000 0.00000 0.0000000 2.546794e+00
[9,] 0.0000000 0.000000 0.00000 0.0000000 8.097541e+00

[,6] [, 7] [,8] [,91]
[1,] 0.0000000 0.000000e+00 0.000000e+00 0.000000
[2,] 0.0000000 0.000000e+00 0.000000e+00 0.000000
[3,] 0.0000000 0.000000e+00 0.000000e+00 0.000000
[4,] 0.0000000 0.000000e+00 0.000000e+00 0.000000
[5,] 0.4463216 3.916193e-03 2.546794e+00 8.097541
[6,] 586.1230244 1.453005e-01 9.449987e+01 301.234913
[7,] 0.1453005 7.516656e+02 8.332548e-01 116.540931
[8,] 94.4998735 8.332548e-01 1.725786e+04 1714.876645 4/
[9,] 301.2349133 1.165409e+02 1.714877e+03 64572.948196

KAkKRKAAKRA A AA A A XA A XA Ik A Ak XA KX,k k% EXPECTED STANDARD ERRORS KAk Akh KAk A A Ik A A Ak Ak Ak A XA A Xk Kk Kk

Beta StdError RSE
\Y 12.200 0.624822332 5.121495 %
Vm 0.082 0.004534793 5.530235 %
km 0.370 0.005841524 1.578790 %
Alin 0.100 0.005182493 5.182493 %
————————————————————————— Variance of Inter-Subject Random Effects ---—-———----
omega?2 StdError RSE
\Y 0.25 0.03549293 14.19717 %
vm 0.25 0.04137028 16.54811 %
Alin 0.25 0.03647948 14.59179 %
———————————————————————— Standard deviation of residual error --------------
Sigma StdError RSE

0.2 0.007625037 3.812519 %
0.1 0.003945487 3.945487 %

sig.slopeA
sig.interB

Khrkkhkkhkkhkkhhkkhkkhkkhrxkhkkhkkhkkhrkkrxkx DETERMINANT **kxhkkhrkrkkhkhhhrhhhkhhhrhkrkhkhkkhx

5.994606e+31

RR R R R R I b b b b I b b b b b b b b b b b b b b b b b 3 3 CRITERION kAhkkhkkhkhkhhkkhkhkkhkhkhhkkhhkhhkkhhkhhhhhhhkhhkhkhkhkxk

3395.176

N
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FrREX KKK K KKKk kkkxxx EIGENVALUES OF THE FISHER INFORMATION MATRIX ****x*xxxkkkk

FixedEffects VarianceComponents

min
max
max/min

2.43715

26521.376944
64636.681018

4

2.
17196.
6713.

561446
209993
478513

R R I b i S b I 2 S b i S db I 4 CORRELATION MATRIX AKAhkkkhk Ak kA Ak Ak Ak kA k K,k %k

(1,1 1
[ZIJ -0
(3,17 0
(4,1 0
(5,1 0
(6,1 0
(7,1 0
(8,1 0
(9,1 0
(1,17 0
(2,1 0
(3,17 0
(4,1 0
(5,1 -0
(6,1 1
(7,1 0
(8,1 -0
(9,1 -0

~

[,1]

.00000000 -
.06785010
.20625422 -
.04352023 -
.00000000
.00000000
.00000000
.00000000
.00000000

[,6]

.0000000000
.0000000000
.0000000000
.0000000000
.0005826757
.0000000000
.0005840399
.0272653545
.0475247719 -

0.
1.
0.
0.
0.
.00000000
.00000000
.00000000
.00000000

o O O o

[,2]
06785010
00000000 -
21015142
05600795
00000000

O OO OOk oo

(@]

[,31]

.2062542
.2101514
.0000000
.1987690
.0000000
.0000000
.0000000
.0000000
.0000000

OO O OO roOoOo

[,4]

.04352023
.05600795
.19876898
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

[,5]

.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.826757e-04
.311462e-05
.146867e-04
.068259e-03

Figure 37: Example

Moreover,

dose

prot: design evaluated for each response
number of subjects for each group
the population Fisher information matrix

subjects:
mfisher:

the PFIM()

[, 7]

0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
1.
5
1
6
1

311462e-05

.84039%e-04
.000000e+00
.127203e-04
.674694e-02

[,8]

.0000000000
.0000000000
.0000000000
.0000000000
.0006146867
.0272653545
.0006127203
.0000000000
.0500002164

of design evaluation output

[,9]

.000000000
.000000000
.000000000
.000000000
.001068259
.047524772
.016746938
.050000216
.000000000

file for

a two response model

function returns the following R objects:

determinant: the determinant of the population Fisher information
matrix

crit:

pP:

se:

the value of the criterion
the vector
the vector of the expected standard errors for each parameter

cv: the corresponding coefficient of variation,
EigenValues:
corr.matrix:

expressed in persent.

the eigenvalues of the Fisher information matrix
the correlation matrix
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6.2 Optimisation output file and objects

Figure 38 represents the output file corresponding to the optimal Bayesian
design described in the Examples section in the paragraph 1.3.

The user can read on the Figure 38:
(::) The name of the function used: PFIM Interface 4.0
(::) The name of the project and the date.

<:E) A summary of the input: structural model, between-subject and error
variance model, initial design, initial numbers or proportions of subjects
and doses, total number of allowed samples, criterion associated to the
initial design.

C:ED Sampling times specifications (according to the algorithm used)
within which the optimal samples will be chosen and error tolerances for
the solver of differential equations system if used.

(::) The optimised design and the associated criterion.

For the simplex algorithm, the number of iterations performed and the
number of function evaluations, the status of the convergence (false or
achieved) are reported

For the Fedorov-Wynn algorithm for optimal population design, the
optimal group structure with the proportion of subjects and the equivalence
in number are then reported. The best one group protocol is also always
reported with associated criterion.

When optimising a Bayesian or an individual design, the resulted
design correspond to the best one group protocol.

(::) The population or individual or Bayesian Fisher information matrix, a
dim*dim symmetric matrix where dim is the total number of population
parameters to be estimated, the number of individual parametres + the
number of the error model parameters or only the number of individual
parameters respectively. The name of the file where is possibly saved the
Fisher information matrix is given.

<::> The value of each parameter with the expected standard error
(StdError) and relative standard error (RSE). In case of Bayesian design,

the associated shrinkages values are also reported.

(::) The value of the determinant of the Fisher information matrix and the
value of the criterion (determinant”(1/dim)) where dim is defined in (5D

The eigenvalues of the Fisher information matrix and the correlation
matrix.
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PFIM Interface 4.0
Project: Example Optimisation

Date: Thu Jul 31 09:22:17 2014

khkkkkkhkkkkkkkhkkkkkkkkkkkkkk*x TNPUT SUMMARY ***kkkkkhkkhkhkhkkhhhhkhkhhhhhkkhhhhkk

Analytical function model: i\

function(t,p,X) {

ka<-p[1]

k<-p[2]

V<-p[3]
y<-(X/V*ka/ (ka-k) * (exp (-k*t) —exp (-ka*t)))
return (y)

}

Initial design:

Sample times for response: A
Protocol subjects doses
1 c=(0.33, 1.5, 5, 12) 1 100
Total number of samples: 4
Associated criterion value: 3.5272
Identical sampling times for each response: FALSE

Random effect model: Trand = 2

Variance error model response A : ( 0.5 + 0.15 *f)~2

J N

Optimization step:

Sampling windows for the response: A
Window 1 : t= 0.33 1 1.5 3 5 8 12

Nb of sampling points to be taken in this window, n[ 1 ]= 4
Maximum total number of points in one elementary protocol : 4
Minimum total number of points in one elementary protocol : 4

AN

BEST ONE GROUP PROTOCOL:
Sample times for response: A

times freq Subjects doses
1 c(0.33, 1.5, 5, 8) 1 1 100

Associated criterion: 3.8066

o ©
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Computation of the Bayesian Fisher information matrix

FIM saved in FIM. txt

*kkkkkkkkkkkkkkkk** FISHER INFORMATION MATRIX ***kkkkkkkkkkhkkhkkk

[,1] [,2] [,3]
[1,] 1.590507 2.096455 -0.2426030
[2,] 2.096455 354.843266 4.4964361
[3,] -0.242603 4.496436 0.2013882

khkkkkkkkkkkkkkkkkkkkkkkk** EXPECTED STANDARD ERRORS ***kkkkkkkhkkkkkhkkkkkhkkhkhk

Beta StdError RSE Shrinkage
ka 2.00 0.9638509 48.19255 % 23.22522 %
k 0.25 0.0688475 27.53900 % 30.33586 %
V 15.00 3.1862487 21.24166 % 45.12080 %

Khkkkkkhkkkkkkkhkhkkkkkkkkkkkkkkkk*x DETERMINANT ***kkkhkkkkkhkkhkkhhhhkhhhhkkhkkhhhkhk

55.15913

khkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkx CRITERION **kkkkkkkhkkhkkkkhkkkkhkkkkkkhkkhkkkkkk

3.806617

*kkkdkkkkkkkkkk*k*k* EIGENVALUES OF THE FISHER INFORMATION MATRIX %k ok ko ok ok kokokdok

FixedEffects VarianceComponents

min 9.552493e-02 NA
max 3.549127e+02 NA
max/min 3.715393e+03 NA

*kkkkkkkkkkkkkkkk** CORRELATION MATRIX ***kkkkkkkkkkkkkkk

[,1] [,2] [,3]
[1,] 1.0000000 -0.4133690 0.5638373
[2,] -0.4133690 1.0000000 -0.6330761
[3,] 0.5638373 -0.6330761 1.0000000

Figure 38: Example of design optimisation output file

Moreover, the PFIM() function returns the following R objects:

\

mfisher: the population or individual or Bayesian Fisher information matrix

corresponding to the optimised protocole

determinant: the determinant of the Fisher information matrix
crit: the value of the criterion

se: the vector of the expected standard errors for each parameter
cv: the corresponding coefficient of variation, expressed in percent
(relative standard error)

sh: the shrinkage values for each parameter in case of Bayesian design

EigenValues: the eigenvalues of the Fisher information matrix
corr.matrix: the correlation matrix
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7. Examples

This section contains a series of examples for EVALUATION (first section)
and OPTIMISATION (second section) of design in pharmacokinetics (PK) and
pharmacodynamics (PD) .

We have tried to illustrate all the features of PFIM Interface 4.0, in this
choice of examples. In Example 1 of each section we have more specifically
illustrated all the new features in this version 4.0 of PFIM Interface.
Furthermore, examples available from the previous version of PFIM

Interface, version 3.1, were also implemented in PFIM Interface 4.0.

All the input, model and output codes used for these examples are available
when PFIM is downloaded, in the directory “Examples” stored in Documents in
the directory “PFIM Interface 4.0”. They are detailed below.

Evaluation
1. Example 1: PK Model
The purpose 1is to evaluate a design for a one compartment first order
absorption PK model with parameters ka, V and k after single dose
administration.
Random effects are exponentially modelled.

Mean Fixed mean Variance
ka 2 [ ] 1
k 0.25 [] 0.25
\Y 15 [] 0.1
Ointer O -9
cTslope 0.15

Please note: as we don’t fix here any parameter, the “Fixed mean” column is
kept as default that is without any of the squares checked

1.1 Model Files
Four possible and exchangeable ways for defining the model are available
in PFIM. These are described in section 3 of this documentation. Below
are reported the figures of the 4 possible models (Figure 39-42).

2 PFIM Interface 4.0.0 - My project = 2%

Project Run 7
Input files  Model I Design ] Optimization algorithms ] Graph 1
Model definition

Madel type 1 Parameters |

MNumber of responses 1

+ Library
% PK model " PD model

PK  |oral1_1cpt_kaVk -

* Single dose
" Multiple doses
" Steady state

" User-defined

Figure 39 : Model defined from the library
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ﬁ model - Bloc-notes | = | = EE |

Fichier Edition Format Affichage 7

$#&Model definition *
$#5ka,k,V

FE

formhi <-expression (dose/VFka/ (ka-k)* (exp(-k*t)-exp(-ka®t)])
form«<—c (formi)

tf<-list (Inf)

Figure 40 : User defined model thorough analytical expression

. 1
] model - Bloc-notes I fpcd f5 e
o ————

Fichier Edition Format Affichage 7 ol

#5Model definition

5 ka,k,V

5

form<—-function{t,p, %) {

ka<-p[1]

kE<-p2]

V<-p[3]

yvi— (X/Vaka! (ka-k) * (exp (-k*t) —exp (-ka*t) ) )
return (y)

H

L3

m

-

Figure 41 : User defined model thorough analytical function

-

ﬁ model - Bloc-notes | = | = 22 |

Fichier Edition Format Affichage 7

#5Model definition ODE
$Ska, k,V

%
formED<-function(t, v,.p)
{

ka<-p[l]

k<-pl2]

Vo <-pl[3]
vdl<-ka*y[2]-k*v[1]
vd2<——-ka®*y[2]
listic(ydl, vd2),ci(v[1]/V)) =
H

»

m

-

Figure 42 : User defined model thorough differential equations

Graphs pre-evaluation

Graphs of the simulated model and sensitivity function with respect to
parameters were obtained by running “Graph only” (see the “Use” section
paragraph 6.8 “Graph tab”.
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Figure 43 : Simulated model
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Figure 44 : Sensitivity function with respect to parameters

Population Fisher Information Matrix (P-FIM)

Evaluation of the Population Fisher information matrix (P-FIM) for several
designs, all patients have a dose of 100.

1.1.1 One group with Elementary Design §;

200 subjects who have the same elementary design composed of 4 sampling
times:
& = (0.33, 1.5, 5, 12)

For this first example, we report the PFIM files (stdin.R, model.r and
Stdout.r) for each possible model form (see paragraph 1.1 of this section
of Examples). We therefore repeated the example four times, using four
input files. Those PFIM files are stored in the directory of Examples,
under EVALUATION and EXAMPLE 1 in 4 different folders that are called:
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“Exemple 1.1. ModLibrary 1.2.1;
1.1 UserDefMod 1.2.1.

1.1 ExpressionMod 1.2.1;

1.1 ModeOde 1.2.1;

€2 PFIM Interface 4.0.0 - My project

(= % |

Project Run 7
Input ﬁlssl Model Design |Optimizalinn algorithms | Graph I

(Fis her Information Matrix

' Population " Individual " Bayesian
Dose
¥ Specification of doses |Idarmcal dose in each elementary design j
b [0
—Design
Number of groups: I-\—
Subjects are given as: * numbers " proportions
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Figure 45

1.1.2

200
times:

One group with Elementary Design &,

€2 PFIM Interface 4.0.0 - My project

subjects who have the same elementary design composed of 3

: Design tab for examples of section 1.1.1
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Figure 46:

1.1.3

Two group population design of 400 subjects:
and 200 with elementary design §&,.

Two Groups Design

Design tab for example 1.1.2

200 with elementary designs ¢§;
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Figure 47: Design tab for example 1.1.3

1.2 Individual Fisher Information Matrix (I-FIM)
Evaluation of the Individual Fisher Information Matrix for the elementary
design § and then §&,.

1.2.1 Elementary Design §;
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Figure 48 : Design tab for exampie 1.2.1



1.2.2 Elementary Design &,
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Figure 49: Design tab for example 1.2.2

1.3 Bayesian Fisher Information Matrix (B-FIM)
Evaluation of the Bayesian Fisher Information Matrix for the elementary
design & and then &,.

1.3.1 Elementary Design §;

.
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Figure 50: Design tab for example 1.3.1



1.3.2 Elementary Design &,
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Figure 51: Design tab for example 1.3.2

Comment on results

Comparing examples in 1.2 and 1.3 it is noticeable that the evaluation of
B-FIM leads to smaller RSE particularly for the parameter ka, which in the
evaluation of I-FIM is very high, above all for the second elementary
design, reaching the value of 138 %.

Comparing the two elementary designs, for both I-FIM and B-FIM, results are
overall better with § than with §,,as the variability on ka is kept lower
and the criterion is slightly higher. For B-FIM, shrinkage values are

provided and they show that with § more information is obtained than with
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1.4 Evaluation of FIM with Fixed Parameter

Another new feature of v4.0 is to assume that a parameter is known (fixed)
and not estimated.

Here we evaluated Population, Individual and Bayesian Fisher Information
Matrix for the design § assuming that the parameter k, 1is fixed (and has
no variability). Those examples are stored in the directory of EXAMPLE-
EVALUATION>EXAMPLE1l, and the names of their folder are: 1.4.1, 1.4.2,
1.4.3 for P-FIM, I-FIM or B-FIM evaluation, respectively.

Comment on results

Comparing the output of example 1.4.1 with the one in section 1.1.1, we can
see that the standard errors are slightly reduced in this example.

As for example 1.4.1, fixing ka resulted in slight improvements of the
Relative Standard Errors in 1.4.2 with respect to the results in section
1.2.1
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Mean Fixed mean Variance
ka 2 v 0
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Figure 52: Parameters tab when fixing parameter Kk,

2. Example 2:PK and immediate response PD model using the
libraries of PK and PD Models (ODE)
= 100 subjects with a dose of 100

The aim is to evaluate, in a population approach, the following one
group designs:

®= sampling times for PK response: 0.5, 2, 30, 49, 180
®= sampling times for PD response: 0.5, 2, 14, 110, 150

for a PKPD model, where the PK 1is one compartment infusion input with
Michaelis-Menten elimination after a single dose administration with
parameters V, Vm and km and the PD is an immediate response model with a
linear drug action and without baseline, where the parameter is Alin.

Mean Fixed Variance
mean
\Y 12.2 [] 0.25
Vm 0.082 [j 0.25
km 0.37 [] 0
Alin 0.1 [j 0.25
Resp A Ginter O
Gslope 0.2
Resp B Gintor 0.1
Gslope 0
Optimisation

1. Example 1: PK Model

We illustrate optimisation algorithms with the same examples used 1in the
Evaluation section and with an additional example (Example 3) that shows a
case of repeated dose regimen. As for Evaluation, Example 1 1s more
detailed with all the new features. For Example 2 and 3 optimisation was
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performed only with Federow-Wynn (FW) algorithm. For Example 1 and 2 we
therefore show only the parts concerning optimisation.

1.1 Population Fisher Information Matrix (P-FIM)

The aim is to optimise a design for 200 subjects with a dose of 100.

1.1.1 Simplex algorithm
" Initial sampling times vector: § = (0.33,1.5,5,12)
= Time interval for the optimisation: (0,12)
£ PFIM Interface 4.0.0 - My project =[5 R%
Project Run ?
Input files I Mods! ] Design  Optimization algorithms IGmph 1
* Simplex " Fedorov-Whynn

Simplex algorithm I

Optimization of proportions or numbers of subjects [Ny | Parameter for initial simplex building 20

Minimum delay between two sampling times 0 Maximum iteration number 5000
Print iteration step Ves +| Relative convergence tolerance 16
Intervals of admissible sampling times | . |[D;12]

Figure 53: Simplex algorithm specifications

Comment on results

The criterion associated with the initial times (&) was 361.7.

When optimizing with Simplex algorithm, the criterion associated to the
optimal times (0.325, 1.632, 4.9, 12) improved of about 1 point, (362.4).

1.1.2 Fedorov-Wynn algorithm
= Allowed sampling times: 0.33,1,1.5,3,5,8,12
= Maximum total number of points in one elementary
protocol: 4
Compare the result with the one obtained with Simplex algorithm

Optimal times where found for three groups of approximately 71, 123 and 6
subjects, respectively. These are: (0.33, 1, 1.5, 8); (0.33, 1.5, 8, 12) and
(0.33, 1.5, 3, 12) for the first, second and third group, respectively. For
this example, the optimisation with Fedorov-Wynn (FW) algorithm led to a
criterion of 371.3, higher than the one obtained with the Simplex algorithm
(362.4) in point 1.1.1. Relative standard errors are acceptable in both
cases (below 20%.

1.1.3 Fixed parameters

The aim is to optimise the design in 1.1 keeping the parameter k, fixed
(assuming no variability on k,;) using the constrains as in 1.1.1 and 1.1.2.
Corresponding examples are stored in the directory of PFIM interface 4.0
(Examples-)OPTIMISATION—>EXAMPLE_1) in the folder 1.1.3.1 and 1.1.3.2 for
the examples optimisation with Simplex or with FW algorithm, respectively.
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Figure 54: Fedorov-Wynn algorithm specifications

1.1.4 Fixed sampling times

Optimize the design in 1.1 with the Fedorov-Wynn algorithm keeping fixed
two sampling times (0.33,1.5), using the constrains as in 1.1.1 and 1.1.2.

(In PFIM Interface 4.0 it is possible to fix times only with the Fedorov-
Wynn algorithm) .

2 PFIM Interface 4.0.0 - My project L= 2|

Project Run 7

Input files | Model I Design  Optimization algorithms |GIEID|"I I

£~ Simplex & Fedorov-\Wynn
Fedorov-Wynn algorithm |
~ Allowed ing times for each ing interval

l_jl | 03311535812
—Allowed numbers of points to be taken from each interval

] |
r Fixed times

j [o33 15
Number of sampling interval  [q Total number of sampling times per subject Min 4 Mazx I4

Figﬁre 55: Fedorov-Wynn algorithm specifications: fixed sampling times

1.1.5 Fixed Parameter and Fixed Sampling Times

Optimize P-FIM using the Fedorov-Wynn algorithm keeping the parameter Kk,

fixed (assuming no variability on K,) and keeping fixed 2 sampling times
(0.33, 1.5).

Essentially this example is the combination of examples 1.1.3.2 and 1.4.1.
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1.2 Individual Fisher Information Matrix (I-FIM)

Optimize the design in 1.1 this time for the Individual Fisher Information
Matrix (I-FIM). Use same constraints in 1.1.1 and 1.1.2.

The optimisations performed for P-FIM are repeated in case of I-FIM.
Examples 1.2.1 and 1.2.2 show the optimisation of I-FIM with the Simplex
algorithm and Fedorov-Wynn algorithm, respectively; in Example 1.2.3 the
optimisation is performed with the Fedorov-Wynn algorithm, fixing parameter
k, and two sampling times (0.33, 1.5).

1.3 Bayesian Fisher Information Matrix (B-FIM)

Optimize the design in 1.1 this time for the Bayesian Fisher Information
Matrix (I-FIM). Use same constraints in 1.1.1 and 1.1.2.

The optimisations performed for P-FIM are repeated in case of B-FIM.
Examples 1.3.1 and 1.3.2 show the optimisation of B-FIM with the Simplex
algorithm and Fedorov-Wynn algorithm, respectively; in Example 1.3.3 the
optimisation is performed with the Fedorov-Wynn algorithm, fixing parameter
k, and two sampling times (0.33, 1.5).

2. Example 2: PK and immediate response PD model using the
libraries of PK and PD Models (ODE)

= 100 subjects with a dose of 100

= Allowed sampling times for PK response: 0.5, 2, 30, 49, 180

= Allowed sampling times for PD response: 0.5, 2, 14, 110, 150
3

= Number of sampling times to be optimized:
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3. Example 3: Repeated doses

This example deals with the optimisation of a design using the Fedorov-Wynn
algorithm and with a model defined by the user using the functions of the
library of models.

Repeated doses of 100 with oral absorption every 12 hours are considered.
The model is a one compartment model first order absorption, parameterized
with rate constant of absorption (ka), volume (V) and clearance (Cl). The
mean and the variance of those parameters are given in the table below.

The random effects are exponentially modelled and the variance error model
is proportional.

Mean Fixed mean Variance
ka 0.7 E] 0.25
Ccl 0.5 [j 0.25
v 5 [ ] 0.25
Ginter O
Gslope O * 2

The purpose 1is to optimise a design with 90 subjects, with sampling times
after the first and the fifth doses, using the Fedorov-Wynn algorithm.
After the first dose, 2 or 3 samples per subject are allowed 1in the
following set (0.5, 1, 2, 3, 4, 6, 8, 10, 12). After the fifth dose, 2 or 3
samples per subject are also allowed in the following set: (48.5, 49, 50,
51, 52, 56, 58, 60).

The initial population design used to run the Fedorov-Wynn algorithm is
composed of four sampling times: (0.5, 12, 50, 60) to be performed in 90
subjects.
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4. Examples from PFIM Interface 3.1

4.1 Single response model
4.1.1 Evaluation

4.1.1.1 Example A

This example deals with the evaluation of a population design using the
library of model.

The purpose is to evaluate a design using a one compartment model after a
single bolus administration. The parameters and their values are given in
the table. The random effects are modelled exponentially. The variance
error model is a combined error model.

The design to be evaluated 1is composed of two groups: one group of 30
subjects with a dose of 100 and sampling times at (0.5, 2, 3, 10) and one
group of 90 subjects with a dose of 200 and sampling times at (1, 4, 12).

Mean Fixed mean Variance
\ 10 0.25

[
K 0.2 ] 0.25

Ointer 0.5
0.15

cYslope

4.1.1.2 Example B

This example deals with the evaluation of a design using a differential
equation system. The model 1s a one compartment model first order
absorption and Michaelis-Menten elimination. The parameters and their
values are given in the table below.

The design to be evaluated is 0.5, 2, 16, 23.5 with a dose of 13.8
performed in 30 subjects.

The variance error model is proportional and the modelling of the random
effects is exponential.

Mean Fixed mean Variance
ka 2.72 [j 0.25
v 12.2 [j 0.25
vm 1.004 [ ] 0.25
km 0.37 [] 0.25
Gslope 0.2
4.1.2 Optimisation

@ Be careful, remember that, with the Fedorov-Wynn algorithm, the sampling
times of the initial population design should be included in the allowed
sampling times, so as the number of allowed samples per group.
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4.1.2.1 Example C

This example deals with the optimisation of a design using the Fedorov-Wynn
algorithm and with a model defined by the user using the functions of the
library of models.

Repeated doses of 100 with oral absorption every 12 hours are considered.
The model is a one compartment model first order absorption, parameterized
with rate constant of absorption (ka), volume (V) and clearance (Cl). The
mean and the variance of those parameters are given in the table below.

The random effects are exponentially modelled and the variance error model
is proportional.

Mean Fixed mean Variance
ka 0.7 E] 0.25
Cl 0.5 [j 0.25
\Y 5 E] 0.25
Gslope O * 2

The purpose 1is to optimise a design with 90 subjects, with sampling times
after the first and the fifth doses, using the Fedorov-Wynn algorithm.
After the first dose, 2 or 3 samples per subject are allowed 1in the
following set (0.5, 1, 2, 3, 4, 6, 8, 10, 12). After the fifth dose, 2 or 3
samples per subject are also allowed in the following set: (48.5, 49, 50,
51, 52, 56, 58, 60).

The initial population design used to run the Fedorov-Wynn algorithm is
composed of four sampling times: (0.5, 12, 50, 60) to be performed in 90
subjects.

4.1.2.2 Example D

This example deals with the optimisation of a design using the Fedorov-Wynn
algorithm. The model is described by a two compartment model after
infusion administration, parameterized in volume (V), rate constant of
elimination (k), and inter-compartmental parameters k12 and k21. The total
dose is equal to 550 and the duration of infusion is 0.0625. The random
effects are modelled exponentially. The variance error model is
proportional.

The mean, the variance of the parameters and the parameters of the variance
error model are given in the tab bellow.

Mean Fixed mean Variance
v 3.08 [] 0.1
k 0.0808 [] 0.2
k12 0.175 [] 0.3
k21 0.116 [] 0.1
Oslope 0.25

A set of eleven allowed sampling times is given: (0.0625, 1, 2, 3, 4, 6, 7,
10, 14, 18, 21).

90 subjects can be involved with either 3 or 4 samples per subject.

An initial design 1is proposed, with 4 samples per subject, the same into
the 90 subjects: (0.0625, 7, 14, 21).
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4.1.2.3 Example E

This example deals with the optimisation of a design using the Simplex
algorithm and with a model defined by the user using the functions of the
library of models.

Ten repeated doses of 2.5 with oral absorption every 24 hours are
considered. The model 1is a two compartment model first order absorption,
parameterized with rate constant of absorption (ka), volume for the first
compartment (V1), clearance (Cl), volume (V2) and the intercompartmental
clearance (Q). The between subject variance model is exponentially and the
variance model is additive.

Values of the parameters are given in the tab bellow:

Mean Fixed mean Variance
ka 1.5 [] 0.502
Cl 0.345 [] 0.059
V1 8 [] 0.018
Q 0.145 [ ] 0
V2 18 L] 1.9
Ointer O ° 08

The aim is to optimise a design with 250 subjects, with sampling times
between the first dose and the tenth doses and also five days after the
last one, using the Simplex algorithm. Thus, the admissible sampling times
are between 0 and 360 hours.

The initial population design used to run the Simplex algorithm is composed
of 6 sampling times: (1, 24, 96, 180, 250, 300) to be performed into 250
subjects.

4.2 Multiple response model
4.2.1 Evaluation

4.2.1.1 Example F

This example deals with the evaluation of a joint modelling of a drug
concentration and its effect (two responses): a one compartment model with
a first order absorption and elimination for the drug concentration is used
and an immediate response model with a constant baseline for the effect.
The model is described using the libraries of models. The between subject
variance model is exponentially and the variance model is combined for the
first response and additive for the second response.

Values of the parameters are given in the tab bellow:

Mean Fixed mean Variance
ka 1.6 ] 0.70
v 8 [] 0.02
Cl 0.13 [] 0.06
Imax 0.73 [] 0.001
C50 0.17 ] 0.7
S0 100 [] 0
Ginter (first response) 0.6
Gsiope 0.07
Cinter (Second response) 8
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The aim is to evaluate a design with one group with sampling times at 0.5,
1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96, 120 hours for the first response and
0, 24, 36, 48, 72, 96, 120, 144 hours for the second response with 32
subjects. The total dose is equal to 100.

4.2.1.2 Example G

This example deals with the evaluation of a design for a joint model for a
drug and its metabolite. The first response 1is described by a one
compartmental model with first order absorption and the second response is
described by a one compartment with a first order metabolic rate constant.
Because of structural identifiability problem in absence of urinary data,
we fix the volume of distribution (Vm) of the metabolite equal to 1, and
thus estimate Clm and km. The model is described using a differential
equation system. The length of wvector in the “initial conditions for each
elementary design” is equal to 3. The first element of this vector is the
dose equal to 300 in this example. The between subject variance model 1is
exponentially and the variance model is combined for the first response and
proportional for the second response.

Values of the parameters are given in the tab bellow:

Mean Fixed mean Variance

Ka 2.86 (] 0.7

v 300 B 0.02

c1 160 B 0.06

Clm 0.16 ] 0.17

km 0.03 L] 0

Ointer (first response) 0.003
Gs1ope 0.28
Ointer (Second response) 0.13

The design to be evaluated 1is composed of 1 group of 80 subjects with
sampling times at (1, 3, 6, 12) for the first response and sampling times
at (1, 6, 11, 12) for the second response.

4.2.1.3 Example H

This example deals with the evaluation of a design study for a PK/PD model
(two responses). The PK model is a one compartmental model with first order
absorption and elimination. The drug effect (PD model) 1is described by a
turnover model with inhibition of the input.

This PK/PD model 1is described using the libraries of models. In this
example, we are 1in the case where we have a PK model with linear
elimination (written using an analytical form) and a turnover response PD
model (written using a differential equation system). Thus, the user has to
complete the tab of the ODE variables because PFIM Interface 3.1 calls a
specific function in order to create a system of differential equation
system describing the corresponding PK/PD model. The between subject
variance model is exponentially. The variance model is combined for the PK
model and additive for the second response.

77



Values of the parameters are given in the tab bellow:

Mean Fixed mean Variance
ka 1.6 [] 0.70
v 8 [] 0.02
Cl 0.13 [] 0.06
Rin 5.4 ] 0.2
kout 0.06 ] 0.02
Imax 1 [] 0
C50 1.2 [] 0.01
Ginter (first response) 0.6
Gsilope 0.07
Cinter (S€econd response) 8

The design to be evaluated is composed of one group of 32 subjects with
sampling times at 0.5, 1, 2 ,3 ,6, 9,12,24,36,48,72,96,120 for the PK model
and 0, 24,36,48,72,96,120,144 for the PD model. The dose is equal to 100.

4.2.2 Optimisation

4.2.2.1 Example I

This example deals with the optimisation of a design using the Simplex
algorithm for a joint modelling of a drug concentration and its effect: a
one compartment model with a first order absorption and elimination for the
drug concentration is used and an immediate response model with a constant
baseline for the effect. The model is described using analytical forms with
the ‘user defined model’ option.

This model has been used for design evaluation in the Example F using the
library of models.

Values of the parameters are given in the tab bellow:

Mean Fixed mean Variance
ka 1.6 [] 0.70
v 8 [] 0.02
Cl 0.13 [] 0.06
Imax 0.73 [ ] 0.001
C50 0.17 L] 0.7
SO 100 [ 0
Ginter (first response) 0.6
Gslope 0.07
Cinter (Second response) 8

The aim is

sampling times between 10 min and 120 hours
measurements and 5 sampling times between 0 and 144 hours for the effect

measurements.

to optimise a design with one group of 32

subjects with 5
for the drug concentration



4.2.2.2 Example J

This example deals with the optimisation of a design using the Fedorov-Wynn
algorithm for a joint model for a drug and its metabolite (two responses).
The first response 1is described by a one compartmental model with first
order absorption and the second response is described by a one compartment
with a first order metabolic rate constant. The model is described using a
differential equation system. The Dbetween subject variance model 1is
exponentially and the variance model is combined for the first response and
proportional for the second response.

This model has been used for design evaluation in the Example G.

Values of the parameters are given in the tab bellow:

Mean Fixed mean Variance

ka 2.8 [] 0.70

\Y 300 [] 0.02

Cl 160 [] 0.06

Clm 0.16 [] 0.001

R 0.03 ] 0.7
Ginter (first response) 0.03
Osilope 0.28
Os10pe (S€CONd response) 0.13

The aim is to optimise a design (same sampling times for both responses)
with 4 sampling times for a total number of samples equal to 400 using the
following allowed sampling times: 0.0625, 1, 3, 6, 11, 12, 14 and 15hours.

ﬁ? Be careful, remember that, with the Fedorov-Wynn algorithm, the sampling

times of the initial population design should be included in the allowed
sampling times, so as the number of allowed samples per group.
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