

 PFIM 4.0

PFIM Group

IAME UMR1137, INSERM and Université Paris Diderot, Paris, France

August 2014

www.pfim.biostat.fr

User guide

Written by Cyrielle Dumont and Thu Thuy Nguyen

PFIM 4.0 is free library of functions.

The Université Paris Diderot and INSERM are the co-owners of this library

of functions.

Contact: pfim@inserm.fr

Members of the PFIM Group

Pr France Mentré (Chair)

Caroline Bazzoli (active member)

Julie Bertrand

Emmanuelle Comets (active member)

Anne Dubois

Cyrielle Dumont (active member)

Hervé Le Nagard (active member)

Giulia Lestini (active member)

Thu Thuy Nguyen (active member)

Sylvie Retout

Disclaimer

We inform users that the PFIM 4.0 is a tool developed by the Laboratory

“Biostatistics-Investigation-Pharmacometrics” - UMR 1137 INSERM and

University Paris Diderot, under R and GCC.

PFIM 4.0 is a library of functions. The functions are published after a

scientific validation.

However, it may be that only extracts are published.

By using this library of functions, the user accepts all the conditions of

use set forth hereinafter.

Licence

This program is free software: you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation, either version 3 of the License, or (at your option) any later

version.

You should have received a copy of the GNU General Public License along with

this program. If not, see

<http://www.gnu.org/licenses/>.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

UNIVERSITE PARIS DIDEROT OR INSERM OR ITS CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

Redistribution and use in source and binary forms, with or without

modification, are permitted under the terms of the GNU General Public

Licence and provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any,

must include the following acknowledgment: "This product includes software

developed by Université Paris Diderot and INSERM (http://www.biostat.fr)."

Alternately, this acknowledgment may appear in the software itself, if and

wherever such third-party acknowledgments normally appear.

4. The names "PFIM" must not be used to endorse or promote products derived

from this software without prior written permission. For written

permission, please contact france.mentre@bichat.inserm.fr.

http://www.gnu.org/licenses/
http://www.biostat.fr)/
mailto:france.mentre@bichat.inserm.fr

5. Products derived from this software may not be called "PFIM", nor may

"PFIM" appear in their name, without prior written permission of the

Université Paris Diderot and INSERM.

Copyright © PFIM 4.0 – Giulia Lestini, Thu Thuy Nguyen, Cyrielle Dumont,

Caroline Bazzoli, Sylvie Retout, Hervé Le Nagard, Emmanuelle Comets and

France Mentré - Université Paris Diderot – INSERM.

www.pfim.biostat.fr

http://www.pfim.biostat.fr/

 4

CONTENTS

1 INTRODUCTION 6

2 METHODOLOGY 7

2.1 Design 7

2.2 Nonlinear mixed effects models 7

2.3 Fisher information matrix 9
2.3.1 Population Fisher information matrix 9
2.3.1.1 Expression 9
2.3.1.2 Computation of power and number of subjects needed 10
2.3.1.3 Previous information 12

2.3.2 Bayesian Fisher information matrix 12

2.4 Design evaluation 13

2.5 Design optimisation 13
2.5.1 Simplex algorithm 14
2.5.2 Fedorov-Wynn algorithm 14

3 USE 15

3.1 Pre-requirement 15

3.2 Components 15

3.3 Working directory 16

3.4 Run 17

4 MODELS 18

4.1 Library of models 18
4.1.1 Library of pharmacokinetic models 18
4.1.2 Library of pharmacodynamic models 24

4.2 Model writing 30
4.2.1 Models defined in analytical form through an R expression 30
4.2.2 Models defined in analytical form through an R function 31
4.2.3 Models defined through a differential equation system 32

5 INPUT 36

5.1 Option for Fisher information expression 36

5.2 Structural model option 37

5.3 Statistical model option 38

5.4 Design 40

5.5 Objects required only for computation of power and number of subjects needed 41

 5

5.6 Graph option 42

5.7 Objects required only for optimisation 42

6 OUTPUT 45

6.1 Evaluation output file and objects 45

6.2 Optimisation output file and objects 48

6.3 Comments 51

7 REFERENCES 52

 6

1 Introduction

Model based optimal design approaches are increasingly performed in

population pharmacokinetic/pharmacodynamics (PKPD) [1], which consist in

determining a balance between the number of subjects and the number of

samples per subject, as well as the allocation of times and doses,

according to experimental conditions. A good choice of design is crucial

for an efficient estimation of model parameters, especially when the

studies are conducted in patients where only a few samples can be taken per

subject. These approaches rely on the Fisher information matrix (FIM) for

nonlinear mixed effect models (NLMEM), available in several software tools

[2] and are a good alternative to clinical trial simulation. They require a

priori knowledge of the model and its parameters, which can usually be

obtained from previous experiments.

PFIM (www.pfim.biostat.fr), developed in our group, is the first tool for

design evaluation and optimisation that has been developed in R. It is

available since 2001 [3] and was extended in version 3 to multi-response

models, inter-occasion variability, discrete covariates with prediction of

power of Wald test [4,5]. The current version 4, released in Spring 2014,

added several new features.

In this new version, for population designs, optimisation can be performed

with fixed parameters or fixed sampling times. The Fisher information

matrix obtained after evaluation or optimisation can be saved in a file.

Previous information already obtained can be assumed and loaded through a

predicted or an observed Fisher information matrix, which is important in

the perspective of performing adaptive designs [6]. Additional features for

Bayesian designs are now available. The Bayesian Fisher information matrix

has been implemented. Design for maximum a posteriori estimation of

individual parameters can be evaluated or optimised and the predicted

shrinkage is also reported [7]. A new way has been added to specify user-

defined models through an R function. It is now possible to visualise the

graphs of the model and the sensitivity functions without performing

evaluation or optimisation.

This documentation describes the methodology implemented in PFIM 4.0 in

Section 2. Section 3 explains how to install and use PFIM. Section 4

describes how to specify models, either by using the PKPD library or the

user-defined model option. Lastly sections 5 and 6 present the input and

output of PFIM.

http://www.pfim.biostat.fr/

 7

2 Methodology

2.1 Design

The elementary design of individual i () is defined by the number

 of samples and their allocation in time ().
For N individuals, the population design is composed of the N elementary

designs such as { }. Usually, population designs are composed of a
limited number Q of groups of individuals with identical design within

each group, performed in a number of individuals. The population design

can thus be written as {[] []}.
Individual and Bayesian designs include only one elementary design.

2.2 Nonlinear mixed effects models

A nonlinear mixed effects model, or a population model, is defined as

follows. The vector of observations for the individual i is
defined as

 ,

where the function f defines the nonlinear structural model, is the

vector of the p-individual parameters for individual i, is the elementary
design of individual i and is the vector of residual error.
The vector of individual parameters depends on μ, the p-vector of the
fixed effects parameters and on bi, the p-vector of the random effects for

individual i. The relation between and (μ,bi) can be additive for a

normal distribution of parameters, that is

 ,

or exponential for a lognormal distribution of parameters so that

 .

It is assumed that with defined as a diagonal variance-
covariance matrix, for which, each diagonal element , , represents

the inter-individual variability of the component of the vector bi.
It is also supposed that , where is a -diagonal matrix such
that

 ()
 .

The terms and are the additive and proportional parts of the

error model, respectively. Conditionnally on the value of , it is assumed
that the errors are independently distributed.

In the case of K multiple responses, the vector of observations can then
be composed of K vectors for the different responses:

 [

] ,

 8

where , , is the vector of observations for the
 response.

Each of these responses is associated with a known function fk, which can

be grouped in a vector of multiple response model F, such as

 [

] ,

where is composed of K sub-designs such that . The sub-

design is then defined by (), with sampling times for the

observations of the k
th
 response, so that ∑

 .

Each response can have its error model and is then the vector composed of
the K vectors of residual errors , , associated with the K

responses.

Inter-occasion variability specification

The expression of the nonlinear mixed effects model has been extended for

model including additional random effects for inter-occasion variability

(or within subject variability) [5].

The individual parameters of an individual i at occasion h are thus

expressed by the following relation, which can be additive as

or exponential as

where

 is, as previously, the p-vector of fixed effects, ib

 the vector of

random effects associated to the individual i and the vector of random
effects associated to the individual i for the occasion h (with H

the number of occasions). ib and are supposed independent. It is assumed
that and with and defined as diagonal matrices of
size . Each element of and of represent the inter-individual

variability of the j
th

component of ib
 and the inter-occasion variability of

the component of , respectively.

This new development was performed for any number of occasions H. It is

implemented in PFIM for the case where same elementary designs are used at

each occasion.

Discrete covariate specification

The present expression of nonlinear mixed effects models accommodates

models with parameters quantifying the influence of discrete covariates.

Two or more categories can be included. In PFIM 3.2, it can be assumed

either that covariates are additive on parameters if the random effect

model is additive, or that covariates are additive on log parameters if the

random effect model is exponential.

For instance, the individual parameter is described as the function of a
discrete covariate , which takes D values defining D categories, with

additive effect model:

 ∑

 9

where here is defined as the reference group and .
For each covariate, the user has to specify , i.e. the vector of covariate
effect coefficients and the proportions of subjects associated to the D

categories.

It can be specified if covariates change or not through the different

occasions. In the latter case, additional objects are needed: the vector of

sequences of values of each covariate at each occasion and the vector of

proportions of the elementary designs corresponding to each sequence of

covariate values (see Section 5 for input specification).

The number of covariates, the number of parameters associated to each

covariate as well as the number of categories for each covariate, are not

limited. In PFIM, the distributions of the covariates are supposed

independent.

2.3 Fisher information matrix

2.3.1 Population Fisher information matrix

2.3.1.1 Expression

The population Fisher information matrix  ,FM   for multiple response

models, for an individual with an elementary design  , with the vector of

population parameters  , is given as:

 
(,) (,)1

,
(,) (,)2

F T

A E V C E V
M

C E V B E V

 
    

 

with E and V the approximated marginal expectation and the variance of the

observations of the individual. The vector of population parameter  is

defined by with the p-vector of the fixed effects and the
vector of the variance terms. is given as a block matrix (more details
are given in [8–10]) with:

1 1 1((,)) 2 ()     
 

   

T

ml

m l l m

E E V V
A E V V tr V V

   
 with m and 1, ,l p

1 1((,)) ()  


 
ml

m l

V V
B E V tr V V

 
 with m and  1, ,diml  

1 1((,)) ()  


 
ml

l m

V V
C E V tr V V

 
 with  1, ,diml  and 1, ,m p

If the dependence of V in is neglected so that 0
V







, the population

Fisher information matrix is a block diagonal matrix that is to say the

block C of the matrix is supposed to be 0. Also, the block A is simplified

and expressed as:

 10

1((,)) 2  


 

T

ml

m l

E E
A E V V

 
 with m and 1, ,l p

Based on publications showing the better performance of the block diagonal

expression compared to the full one with linearisation [2], the default

option in PFIM is the block diagonal information matrix. However, since

PFIM 3.2, the user can choose to compute either a full or a block diagonal

matrix for models without covariate and inter-occasion variability. The

size of the block C and the block B of the expression of the Fisher

information matrix are thus modified to incorporate the within subject

variabilities .

Prediction of standard errors

According to the inequality of Cramer-Rao, the inverse of MF is the lower

bound of the variance-covariance matrix of any unbiased estimate of the

parameters. From the square roots of the diagonal elements of the inverse

of MF, the predicted standard errors (SE) for estimated parameters can be

calculated.

2.3.1.2 Computation of power and number of subjects needed

Comparison test

Computation of the expected power. The Wald test can be used to assess the

difference of a covariate effect β. In PFIM, the Wald test is performed on

the of each category for each covariate; a global Wald test on the vector
 (all effect coefficients) is not implemented.
For one covariate and an effect of one category β (D=2), the null

hypothesis is H0: {β=0} while the alternative hypothesis is H1: {β≠0}. The

statistic of the Wald test is defined as,

()









WS

SE

 with


 the covariate

effect estimates and ()


SE its associated standard error. Under H1, when

β=β1, we then compute the power of the Wald test defined as:

1 1
1 2 1 2

1 1

1
() ()

diffP z z
SE SE

 

    
         

    
 (1)

where Ф is the cumulative distribution function of the standard normal

distribution and
2z is such that  2 1 2  z .

Using the covariate effect fixed by the user, the corresponding standard

error 1()SE is predicted since PFIM 3.2 for a given design and the values

of population parameters.

Computation of the number of subjects needed. The number of subjects needed

to achieve a power P to detect a covariate effect using the Wald test is

also computed. First, from the equation (1), we compute the SE needed on β

to obtain a power of P, called NSE(P), using the following relation:

 
1

1

2

()
1

NSE P
z P






 
 (2)

 11

Last, we compute the number of subjects needed to be included to obtained a

power of P, called NNI(P) using

 1()
()


 

SE
NNI P N

NSE P
 (3)

where N is the initial number of subjects in the given design and  1SE the

corresponding predicted SE of β for the given design.

Equivalence test

Computation of the expected power. The Wald test can be used to assess the

equivalence of a covariate effect β.

In PFIM, the Wald test is performed on the β of each category for each

covariate, a global Wald test on the vector β (all effect coefficients) is

not implemented.

For one covariate and an effect of one category β (D=2), the null

hypothesis is H0: {β≤-∆L or β≥+∆L} while the alternative hypothesis is H1:

{-∆L≤β≤+∆L}. H0 is composed of two unilateral hypothesis
L0,H  :{β≤-∆L} and

L0,H  :{β≥+∆L}. Equivalence between two covariate effects can be concluded if

and only if the two hypotheses
L0,H  and

L0,H  are rejected.

The two statistics of the unilateral Wald test under the null hypothesis

are defined as,

^

()
L

L
WS

SE
 

 




 and

^

()
L

L
WS

SE
 






 with


 the covariate effect

estimates and, its associated standard error. Under H1, when β=β1 with β1 Є

[-∆L, ∆L], we then compute the power of the equivalence Wald test defined

as:

 1
1 1

1

1 ,0
()

L
equi LP z if

SE


   
      

 
 (4)

  1
1 1

1

0,
()

L
equi LP z if

SE


  
       

 
 (5)

where Ф is the cumulative distribution function of the standard normal

distribution and z is such that   1z   .

In equivalence test β1 is usually chosen to be zero.

Using the covariate effect fixed by the user, the corresponding standard

error 1()SE is predicted since PFIM 3.2 for a given design and the values

of population parameters.

Computation of the number of subjects needed. The number of subjects needed

to achieve a power P to show equivalence between two covariate effects

using the Wald test is also computed. First, from equations (4) and (5), we

compute the SE needed on β to obtain a power of P, called NSE(P), using the

following relation:

 
 

 
 1

11
,0

1

L

LNSE P if
z P



 
   
  

 (6)

 12

 
 

 
 1

11
0,L

LNSE P if
z P



 
   


 (7)

where Ф is the cumulative distribution function of the standard normal

distribution and z is such that   1z   .

Last, we compute the number of subjects needed to be included to obtained a

power of P, called NNI(P) using the equation (3) like for comparison test.

2.3.1.3 Previous information

New feature: An option to load previous information through a predicted or

an observed Fisher information matrix is now available in PFIM 4.0.

Evaluation and optimisation are then performed combining the previous

information matrix with the current Fisher information matrix, following

the principle of adaptive designs [6].

Taking into account previous information, the new computation of the Fisher

information matrix is then:

),(MM FprevF 




N

i

i

1



where
prevFM denotes the previous Fisher information matrix.

Note that the previous Fisher information matrix should have the same

dimension as the current Fisher information matrix.

It is now possible to save the Fisher information matrix corresponding

to an evaluated or optimised design.

2.3.2 Bayesian Fisher information matrix

New feature: The new version 4.0 of PFIM enables design evaluation and

optimization for maximum a posteriori estimation of individual parameters

based on the Bayesian Fisher information matrix [7].

We are interested in the precision estimation of individual parameters for

a subject i, associated to the vector of observation y (index i being

omitted). These individual parameters can be estimated by maximum a

posteriori (MAP). As is known, estimating is similar to estimating .
More precisely, the MAP estimate of is given by

    )(log) |(log argmax
)(

)() |(
 argmax))y |((argmaxˆ 


 pyp

yp

pyp
p 










where p is the probability density. The Bayesian Fisher information matrix,

taking into account the a priori distribution of the random effects, is

expressed as

     

  1

22

 |

2

)),,((

)(log) |(log)y |(log
)(











































































gME

p
E

yp
EE

p
EM

IF

TTyTBF

 13

where
 















TyIF

yp
EM






) |(log
),(

2

, expression of the individual Fisher

information matrix in classical nonlinear regression models. The

expectation  )),,(( gME
IF

 can be obtained by first order approximation

of the model around the expectation of random effects (i.e., 0).

The shrinkage (Sh) is quantified from the ratio of the estimation variance

predicted by MBF
-1

and the a priori variance, and can be calculated as the

diagonal elements of the matrix 11
)()(

  
BF

MWI (see [7] for more

details).

When a parameter has an a priori variance equal to 0, it will be

considered as fixed to the mean value and no predicted shrinkage will be

computed.

2.4 Design evaluation

Population, individual and Bayesian design evaluation is based on the

computation of the population, individual and Bayesian Fisher information

matrix, respectively. During this process, the expected standard errors on

the population or individual parameters with the design are evaluated. The

user can choose to fix one or several parameters in the model that will not

be computed in the Fisher information matrix.

Eigenvalues and conditional number are given by default. When considering

design for Bayesian estimation of individual parameters, the shrinkages are

also reported.

The computed Fisher information matrix can be saved in a file if requested.

2.5 Design optimisation

Algorithms are required to optimise exact or statistical designs. In the

case of an exact optimisation, the group structure of the design is fixed:

the number of elementary designs, the number of samples per elementary

design and the number of subjects per elementary design are given and the

design variables to optimise are only the sampling times. In the case of

statistical optimisation, the sampling times (number and allocation) and

the proportions of subjects in each elementary design are optimised.

PFIM optimises population design using the D-optimal criterion, i.e.

maximising the determinant of the population Fisher information matrix, or,

similarly, minimising its inverse.

The Fedorov-Wynn algorithm has been implemented since PFIM 3.0 in addition

to the Simplex algorithm. Compared to the Simplex algorithm, the Fedorov-

Wynn algorithm better affords high design variables optimisation. Moreover,

it considers only pre-specified sampling times, avoiding, clinically

unfeasible sampling times. The drawback is the huge number of elementary

designs to be created (with corresponding huge number of Fisher information

matrices to compute) when the set of allowed sampling times is very large.

 14

2.5.1 Simplex algorithm

The Simplex algorithm optimises statistical or exact designs in constrained

intervals, given a total number of samples.

An initial population design needs to be supplied to start the

optimisation. The maximum number of elementary designs and the number of

sampling times per elementary design are fixed, the sampling times and the

proportions of subjects in each elementary design are then optimised. From

this initial design, initial vertices for the simplex algorithm are

derived, reducing successively each component by 20% (a default value which

can be changed) from the original component.

PFIM uses the Splus function “fun.amoeba” from Daniel Heitjan (revised

12/94), which is a translation from the Numerical Recipes for Nelder and

Mead Simplex function [11].

Note that it is now possible to take into account previous information

through a predicted or an observed Fisher information matrix to optimise

designs with this algorithm.

2.5.2 Fedorov-Wynn algorithm

The Fedorov-Wynn algorithm is specifically dedicated to design optimisation

problems and has the property to converge towards the D-optimal design [12–

14]. It optimises statistical designs for a given total number of samples.

The sampling times are chosen among a given finite set of times. Minimum

and maximum numbers of samples per subject are specified.

To start the algorithm, an initial population design is then required.

The Fedorov-Wynn algorithm is programmed in a C code and is linked to PFIM

through a dynamic library, called libFED.dll and libFED64.dll for R 32-bit

and 64-bit respectively. Moreover, PFIM uses the function combn in the R

package “combinat”.

New feature: The best one group protocol, which maximises the determinant

of the elementary Fisher information matrix of all elementary protocols

chosen among the predefined set of samples, is given by default when

running Fedorov-Wynn algorithm (before calling the dynamic library). This

is the optimal protocol for individual design and Bayesian design.

Moreover, in PFIM 4.0, optimisation with Fedorov-Wynn algorithm can be

performed assuming that some sampling times are fixed.

 15

3 Use

3.1 Pre-requirement

The software R is required. To use PFIM 4.0, additional packages are needed

in the R library directory:

- for differential equation system to describe the model: “deSolve”

and “nlme” packages

- for the Fedorov-Wynn algorithm: “combinat” package

An additional package “numDeriv” is needed for the computation of the

full Fisher information matrix and for numerical derivatives of models

written as standard R functions.

The easiest way to install packages is directly from the web. To install

the packages deSolve, nlme, combinat and numDeriv, start R and choose the

Packages item from the menu. Choose Install package(s) from CRAN to install

from the web (you will see a list of all available packages pop up --

choose deSolve, nlme, combinat and numDeriv).

To install PFIM 4.0, the user has to download the function named PFIM 4.0

available on the webpage www.pfim.biostat.fr.

3.2 Components

PFIM 4.0 includes two main folders called:

 PFIM 4.0

 Examples

The folder PFIM 4.0 is composed of 3 principal files and one folder:

- The 3 principal files are:

o The main function (program) file (PFIM.r)

o The input file (stdin.r)

o The model file (model.r).

 The folder is called Program and contains the files of functions:

o Pfim4.0op1.r: To compute the block diagonal Fisher

Information matrix (option 1) to evaluate a population,

individual or Bayesian design using an analytical form to

describe the model.

o PfimOPT4.0op1.r: To compute the block diagonal Fisher

Information matrix (option 1) to optimise a population,

individual or Bayesian design using an analytical form to

describe the model

o EQPfim4.0op1.r: To compute the block diagonal Fisher

Information matrix (option 1) to evaluate a population,

individual or Bayesian design using a differential equation

system to describe the model

o EQPfimOPT4.0op1.r: To compute the block diagonal Fisher

Information matrix (option 1) to optimise a population,

individual or Bayesian design using a differential equation

system to describe the model

o Pfim4.0op2.r: To compute the full Fisher Information matrix

(option 2) to evaluate a population design using an analytical

form to describe the model.

o PfimOPT4.0op2.r: To compute the full Fisher Information

matrix (option 2) to optimise a population design using an

analytical form to describe the model

http://www.pfim.biostat.fr/

 16

o EQPfim4.0op2.r: To compute the full Fisher Information

matrix (option 2) to evaluate a population design using a

differential equation system to describe the model

o EQPfimOPT4.0op2.r: To compute the full Fisher Information

matrix (option 2) to optimise a population design using a

differential equation system to describe the model

o algosimplex4.0.r: To use the Simplex algorithm

o initfedoR.c and classfed.h: To compile the dll

o libFED.dll and libFED64.dll: The dynamic libraries of the

Fedorov-Wynn algorithm for R 32-bit and 64-bit respectively

o algofedorov4.0.r: To use the dynamic library libFED.dll or

libFED64.dll

o LibrayPK.r: To use the library of pharmacokinetic models

o LibrayPD_PDdesign.r: To use the library of immediate

response pharmacodynamic models alone

o LibrayPD_PKPDdesign.r: To use the library of pharmacodynamic

models linked to pharmacokinetic models both written using

analytical form

o CreateModel_PKPDdesign.r: To use the libraries of

pharmacokinetic and pharmacodynamic models when they are

writing either with different forms or both with

differential equation systems.

 The files in the folder Program should not be changed.

The folder called Examples contains the examples files. The documentation

which gives their description is included in PFIM 4.0 with this user guide.

To install PFIM 4.0, create a directory (for example directory “U:\\My

Documents\\PFIM 4.0”) and download PFIM 4.0.

3.3 Working directory

- Create a working directory, for example:

“U:\\My Documents\\PFIM 4.0_examples\\Example1”

- Copy the files PFIM.r, stdin.r and model.r in this directory

- In the file “PFIM.r”, specify your working directory:

directory<-“U:\\My Documents\\PFIM 4.0_examples\\Example1”

- Then, specify your program directory i.e. where is the folder called

Program

directory.program<-“U:\\My Documents\\PFIM 4.0\\Program”

- Save the file PFIM.r

 17

3.4 Run

Once the input file and the model file are filled in, the user can run

PFIM. Load the main function PFIM() implemented in the file PFIM.r. To do

that, choose the File item from the menu. Select “Source R code”; click on

the right directories up to the file PFIM.r. The user can also load the

file by typing the command in the Command Window:

source("U:\\My Documents\\PFIM 4.0_examples\\Example1\\PFIM.r")

Call the R function in the Commands window: PFIM()

 18

4 Models

Models in PFIM can be specified either through their analytical form or as

a solution of system of differential equations. PFIM provides libraries of

models (see Section 4.1), and users may also define their own model

analytically or using a system of differential equations (see Section 4.2).

The PFIM library implements R expressions or differential equation systems

for PKPD models. The PK model library includes one, two and three

compartment models with linear elimination and with Michaelis-Menten

elimination. The PD model library supports immediate response models (alone

or linked to a pharmacokinetic model) and the turnover response models

(linked to pharmacokinetic model). These libraries have been derived from

the PKPD library developed by Bertrand and Mentré for the MONOLIX software,

and all analytical expressions are in that document [15]. A documentation

of PKPD models for PFIM is available when downloading PFIM. Presently,

there is no model with lag time in the library. To use the library of

models, the user has to specify the path of the corresponding library file

in the model file named by default model.r.

New feature: In the previous versions of PFIM, a user-defined model given

in analytical form needed to be specified through an R expression. An

alternative way to write the model is now available, through an R function

with a specific format (see section 4.2.3).

4.1 Library of models

4.1.1 Library of pharmacokinetic models

Two types of PK models can be used in PFIM, PK models with a first order

linear elimination or PK models with a Michaelis-Menten elimination. The PK

models with a linear elimination are written using an analytical form

through an R expression whereas the PK models with a Michaelis-Menten

elimination are written using a differential equation system. These PK

models are written in the file LibraryPK.r available in the Program folder.

The user has to specify the path of this file in the model file to use this

library of models:

source(file.path(directory.program,”LibraryPK.r”))

The following sections show the list of models for each type of PK model in

separate tables. These tables display all the information in order to use

the model function chosen. The model is described by:

- a name

- the type of input

- the type of elimination

- the number of compartments

- the parameters used (parameterisation)

- the type of administration (sd : single dose, md: multiple dose,

ss: steady state) depending on administration type, additional

variables may be required. They are specified in the arguments (N:

number of doses, tau: interval between two doses, TInf: duration

of the infusion, doseMM: dose)

For models with infusion, the user must specify the duration of infusion

(TInf) as an argument. The rate of infusion is computed automatically in

the function model through the expression: dose/TInf. For PK models with

 19

linear elimination, the variable dose has to be specified in the input

file.

When a model with multiple dose administration is used, for example the

first order oral absorption with one compartment model with option md

(oral1_1cpt_kaVCl_md) from the library, the function of the model uses

three parameters (ka, Cl and V) and two needed variables (N, tau): the

number of doses (N) and the interval between two doses (tau) (see Example

1, section 4.2).

Pharmacokinetic models with a linear elimination

The library of PK models with linear elimination is composed of one, two

and three compartment models for the three types of input (bolus, infusion

and first order oral absorption) and the three types of administration

(single dose, multiple dose, steady state).

The list of these PK models is given in Table 1.

 20

Table 1. Pharmacokinetic models with first order linear elimination included in the library of models

Name Input Cpt Elimination Parameterisation Administration Arguments

bolus_1cpt_Vk IV-bolus 1 1st order V, k

sd -

md N, tau

ss tau

bolus_1cpt_VCl IV-bolus 1 1st order V, Cl

sd -

md N, tau

ss tau

infusion_1cpt_Vk IV-infusion 1 1st order V, k

sd TInf

md TInf, N, tau

ss TInf, tau

infusion_1cpt_VCl IV-infusion 1 1st order V, Cl

sd TInf

md TInf, N, tau

ss TInf, tau

oral1_1cpt_kaVk 1st order 1 1st order ka, V, k

sd -

md N, tau

ss tau

oral1_1cpt_kaVCl 1st order 1 1st order ka, V, Cl

sd -

md N, tau

ss tau

bolus_2cpt_Vkk12k21 IV-bolus 2 1st order V, k, k12, k21

sd -

md N, tau

ss tau

bolus_2cpt_ClV1QV2 IV-bolus 2 1st order Cl, V1, Q, V2

sd -

md N, tau

ss tau

infusion_2cpt_Vkk12k21 IV-infusion 2 1st order V, k, k12, k21

sd TInf

md TInf, N, tau

ss TInf, tau

 21

infusion_2cpt_ClV1QV2 IV-infusion 2 1st order Cl, V1, Q, V2

sd TInf

md TInf, N, tau

ss TInf, tau

oral1_2cpt_kaVkk12k21 1st order 2 1st order ka, V, k, k12, k21

sd -

md N, tau

ss tau

oral1_2cpt_kaClV1QV2 1st order 2 1st order ka, Cl, V1, Q, V2

sd -

md N, tau

ss tau

bolus_3cpt_Vkk12k21k13k31 IV-bolus 3 1st order V, k, k12, k21, k13, k31

sd -

md N, tau

ss tau

bolus_3cpt_ClV1Q1V2Q2V3 IV-bolus 3 1st order Cl, V1, Q1, V2, Q2, V3

sd -

md N, tau

ss tau

infusion_3cpt_Vkk12k21k13k31 IV-infusion 3 1st order V, k, k12, k21, k13, k31

sd TInf

md TInf, N, tau

ss TInf, tau

infusion_3cpt_ClV1Q1V2Q2V3 IV-infusion 3 1st order Cl, V1, Q1, V2, Q2, V3

sd TInf

md TInf, N, tau

ss TInf, tau

oral1_3cpt_kaVkk12k21k13k31 1st order 3 1st order ka, V, k, k12, k21, k13, k31

sd -

md N, tau

ss tau

oral1_3cpt_kaClV1Q1V2Q2V3 1st order 3 1st order ka, Cl, V1, Q1, V2, Q2, V3

sd -

md N, tau

ss tau

 22

Pharmacokinetic models with a Michaelis-Menten elimination

One, two and three compartment models are implemented for the three types

of input. For bolus input, only single dose models are implemented. For

infusion and first order absorption input, single dose and multiple dose

are implemented. There is no steady-state form for PK models with

Michaelis-Menten elimination (in this case the user can use a multiple dose

model with enough doses to reach SS). The list of these PK models is given

in Table 2.

For models with a bolus input, the dose has to be specified in the input

file (stdin.r by default) as the initial condition of the differential

equation system (see Example 7.1, section 4.2). For models with infusion or

first order absorption input, dose has to be specified as an argument of

the model function and NOT IN THE INITIAL CONDITION OF THE MODEL IN THE

INPUT FILE (see Example 7.2, section 4.2).

 As the dose is an argument, it is not possible to specify different

doses per group for models with infusion or first order absorption input.

All groups of the design considered have the same dose. Otherwise, the user

should use the user defined model option.

 23

Table 2. Pharmacokinetic models with Michaelis-Menten elimination included in the library of models

Name Input Cpt Elimination Parameterisation Administration Arguments

bolus_1cpt_VVmkm IV-bolus 1 Michaelis-Menten V, Vm, km sd -

infusion_1cpt_VVmkm IV-infusion 1 Michaelis-Menten V, Vm, km
sd doseMM,TInf

md doseMM,TInf, tau

oral1_1cpt_kaVVmkm 1st order 1 Michaelis-Menten ka, V,Vm, km
sd doseMM

md doseMM,tau

bolus_2cpt_Vk12k21Vmkm IV-bolus 2 Michaelis-Menten
V, k12, k21, Vm,

km
sd -

bolus_2cpt_V1QV2Vmkm IV-bolus 2 Michaelis-Menten
V1, Q, V2, Vm,

km
sd -

infusion_2cpt_Vk12k21Vmkm IV-infusion 2 Michaelis-Menten
V, k12, k21, Vm,

km

sd doseMM,TInf

md doseMM,TInf, tau

infusion_2cpt_ V1QV2Vmkm IV-infusion 2 Michaelis-Menten
V1, Q, V2, Vm,

km

sd doseMM,TInf

md doseMM,TInf, tau

oral1_2cpt_kaVk12k21Vmkm 1st order 2 Michaelis-Menten
ka, V, k12, k21,

Vm, km

sd doseMM

md doseMM, tau

oral1_2cpt_kaV1QV2Vmkm 1st order 2 Michaelis-Menten
ka, V1, Q, V2,

Vm, km

sd doseMM

md doseMM, tau

bolus_3cpt_Vk12k21k31k13Vmkm IV-bolus 3 Michaelis-Menten
V, k12, k21,

k13, k31, Vm, km
sd -

bolus_3cpt_ V1Q1V2Q2V3Vmkm IV-bolus 3 Michaelis-Menten
V1, Q1, V2, Q2,

V3, Vm, km
sd -

infusion_3cpt_Vk12k21k13k31Vmkm IV-infusion 3 Michaelis-Menten
V, k12, k21,

k13, k31, Vm, km

sd doseMM,TInf

md doseMM,TInf, tau

infusion_3cpt_V1Q1V2Q2V3Vmkm IV-infusion 3 Michaelis-Menten
V1, Q1, V2, Q2,

V3, Vm, km

sd doseMM,TInf

md doseMM,TInf, tau

oral1_3cpt_kak12k21k13k31Vmkm 1st order 3 Michaelis-Menten
ka, k12, k21,

k13, k31, Vm, km

sd doseMM

md doseMM,tau

oral1_3cpt_kaV1Q1V2Q2V3Vmkm 1st order 3 Michaelis-Menten
ka, V1, Q1, V2,

Q2, V3, Vm, km

sd doseMM

md doseMM, tau

 24

4.1.2 Library of pharmacodynamic models

The library of PD models supports immediate response models (either as a

function of observed concentrations, or linked to a pharmacokinetic model)

and turnover response models (linked to pharmacokinetic models).

The following tables present these models, giving the following elements

for each drug model:

- the name of the model function in the library

- the parameters used (parameterisation)

Examples for the use of the library of pharmacodynamic models are presented

in section 4.2.

Immediate response pharmacodynamic models alone

Linear, quadratic, logarithmic, Emax, sigmoid Emax, Imax, sigmoid Imax

models with null or constant baseline are available. The list of these

models is given in Table 3.

These models are written in closed form and can be used in the case of a

model with one response (PD evaluation or optimisation). They are

implemented in the file LibraryPD_PDdesign.r. Thus, the user has to

specify the path of this file in the model file to use this library of

models:

source(file.path(directory.program,”LibraryPD_PDdesign.r”))

For these models, the design variables are the concentrations or the doses

instead of the sampling times.

For example, if one uses a linear drug action model without baseline

(immed_lin_null) from the library, the model uses one parameters (Alin)

(see Example 2, section 4.2).

Pharmacodynamic models linked to pharmacokinetic model

In this section, we consider models with two responses, with one response

for the PK and the other one for the PD. We thus optimise sampling times

for both responses using a PK/PD model. Using the libraries of models, we

have four cases to compose the PK/PD model depending on the form for each

submodel: either with an analytical form (AF) or a differential equation

system (ODE).

Therefore, there are four cases of PK/PD models in PFIM library:

1. PK model with linear elimination (AF) and immediate response PD

model (AF)

2. PK model with linear elimination (AF) and turnover response PD

model (ODE)

3. PK model with Michaelis-Menten elimination (ODE) and immediate

response PD model (AF)

4. PK model with Michaelis-Menten elimination and turnover response

PD model (ODE)

 25

Table 3. Immediate response pharmacodynamic models included in the PD library for PD alone and for PK/PD model

Drug action

models

Baseline

Null baseline Constant baseline

Name Parameterisation Name Parameterisation

Linear immed_lin_null Alin immed_lin_const Alin, S0

Quadratic immed_quad_null Alin, Aquad immed_quad_const Alin, Aquad, S0

Logarithmic immed_log_null Alog immed_log_const Alog, S0

Emax immed_Emax_null Emax, C50 immed_Emax_const Emax, C50, S0

Sigmoid Emax immed_gammaEmax_null Emax, C50, gamma immed_gammaEmax_const Emax, C50, gamma, S0

Imax immed_Imax_null Imax, C50 immed_Imax_const Imax, C50, S0

Sigmoid Imax immed_gammaImax_null Imax, C50, gamma immed_gammaImax_const Imax, C50, gamma, S0

 26

To use PFIM for design evaluation and optimisation for a PK/PD model, the

two models must be in the same format.

If both models are written in closed form (case 1), the user can combine

the immediate response pharmacodynamic models in closed form expression

from the file LibraryPD_PKPDdesign.r with the pharmacokinetic models with

first order linear elimination (Table 1) in closed form expression from the

file libraryPK.r. In the PD functions, the expression of the PK model is

given as an argument (see Example 3, section 4.2).

In this case, the user must fill in the stdin.r using analytical form

options and must specify the paths of the library files in model.r:

source(file.path(directory.program,”LibraryPK.r”))

source(file.path(directory.program,”LibraryPK_PKPDdesign.r”))

For the three other cases, the user has to call a specific function in

order to create a system of differential equations describing the

corresponding PK/PD model. This function named Create_formED() is

implemented in the file CreateModel_PKPDdesign.r and has to be used in the

model file as follows:

source(file.path(directory.program,”CreateModel_PKPDdesign.r”))

create_formED(fun_pk,fun_pd,dose=NA,tau=NA,TInf=NA)

The arguments to this function are:

- fun_pk and fun_pd: the names of the PK and PD models, respectively

- dose: value of the dose only for a PK model with infusion or oral

input (by default: NA)

- tau: dosing interval to specify only for multiple dose conditions

(by default: NA)

- TInf: time of infusion to specify only for PK model with infusion

input (by default: NA)

The output of this function is a new file, named model_created.r, which is

created in the directory currently used. This new file contains a function

implementing the differential equation system for the corresponding PK/PD

model. This file can be deleted after running PFIM. It will be

created/overwritten each time the function Create_formED() is called.

Because the resulting function is an ODE system, the user must fill in the

section corresponding to differential equation options in the input file

(see Section 5).

The list of the immediate response PD models in the PFIM library is shown

in Tables 3 and 4. The list of the turnover response PD models is given in

Table 5.

For the second case, where a PK model with linear elimination is associated

to a turnover PD response model (defined using differential equation

system), the PK model must be written with a differential equations system

as well. Consequently, only some PK models from the Table 1 are implemented

in CreateModel_PKPDdesign.r:

- for bolus input, only single dose models

- for infusion input, single dose and multiple dose

- for first order absorption input, single dose and multiple dose

For models with a bolus input, the dose has to be specified in the input

file (stdin.r by default) as the initial condition of the differential

equation system (see Example 10, section 4.2). For models with infusion or

first order absorption input, dose has to be specified as an argument of

the function Create_formED() and NOT IN THE INITIAL CONDITION OF THE MODEL

 27

IN THE INPUT FILE (see Example 11, section 4.2). Consequently, it is not

possible to specify different doses per group when using models with

infusion or first order absorption input from the library. All groups of

the design are assumed to have the same dose. Otherwise, the user should

use the user defined model option.

28

Table 4. Immediate response pharmacodynamic models linked to a pharmacokinetic model included in the library*

Drug action

models

Baseline/disease models

Linear progression Exponential increase Exponential decrease

Name Param. Name Param. Name Param.

Linear immed_lin_lin
Alin, S0,

kprog
immed_lin_exp

Alin, S0,

kprog
immed_lin_dexp

Alin, S0,

kprog

Quadratic immed_quad_lin
Alin, Aquad,

S0, kprog
immed_quad_exp

Alin,

Aquad, S0,

kprog

immed_quad_dexp
Alin, Aquad,

S0, kprog

Logarithmic immed_log_lin
Alog, S0,

kprog
immed_log_exp

Alog, S0,

kprog
immed_log_dexp

Alog, S0,

kprog

Emax immed_Emax_lin
Emax, C50,

S0, kprog
immed_Emax_exp

Emax, C50,

S0, kprog
immed_Emax_dexp

Emax, C50,

S0, kprog

Sigmoid

Emax
immed_gammaEmax_lin

Emax, C50,

gamma, S0,

kprog

immed_gammaEmax_exp

Emax, C50,

gamma, S0,

kprog

immed_gammaEmax_dexp

Emax, C50,

gamma, S0,

kprog

Imax immed_Imax_lin
Imax, C50,

S0, kprog
immed_Imax_exp

Imax, C50,

S0, kprog
immed_Imax_dexp

Imax, C50,

S0, kprog

Sigmoid

Imax
immed_gammaImax_lin

Imax, C50,

gamma, S0,

kprog

immed_gammaImax_exp

Imax, C50,

gamma, S0,

kprog

immed_gammaImax_dexp

Imax, C50,

gamma, S0,

kprog

* In addition to those in Table 3.

29

Table 5. Turnover response pharmacodynamic models linked to a pharmacokinetic model included in the library

Types

of

response

Models with impact on the

Input Output

 Name Parameterisation Name Parameterisation

Emax turn_input_Emax Rin,kout,Emax,C50 turn_output_Emax Rin,kout,Emax,C50

Sigmoid

Emax
turn_input_gammaEmax Rin,kout,Emax,C50,gamma turn_output_gammaEmax Rin,kout,Emax,C50,gamma

Imax turn_input_Imax Rin,kout,Imax,C50 turn_output_Imax Rin,kout,Imax,C50

Sigmoid

Imax
turn_input_gammaImax Rin,kout,Imax,C50,gamma turn_output_gammaImax Rin,kout,Imax,C50,gamma

Full

Imaxa
turn_input_Imaxfull Rin,kout,C50 turn_output_Imaxfull Rin,kout,C50

Sigmoid

full

Imaxa

turn_input_gammaImaxfull Rin,kout,C50,gamma turn_output_gammaImaxfull Rin,kout,C50,gamma

a
Full Imax means Imax is fixed equal to 1

30

4.2 Model writing

The structural model should be written in a text file (called “model.r” by

default but any name can be used). It can be specified either through an

analytical form (as an R expression or an R function) or as a solution of

systems of differential equations.

An analytical expression model or differential equation model can be called

from PFIM libraries (see section 4.1) or implemented by the users. R

functions of models can only be defined by the users and are not available

in the pre-implemented model libraries.

4.2.1 Models defined in analytical form through an R expression

Description

In case of analytical form, the model for each response should be written

assigned in an object called ‘formi’ where i is the letter of the alphabet

A,B,C,…. The “formi” for all the responses are then grouped in a vector

called “form”:

form<-c(formA,formB,formC,…)

If the model for a response is defined over intervals by different

expressions, each response should be written as a vector of expressions.

Each expression can be defined in an object ‘formI’, where I = 1, 2, 3,….

For example, if the user wants to give three expressions for the first

response, he can write as follows:

formA<-c(form1,form2,form3)

formA can be a model of the PFIM libraries or an user-defined model. In the

latter case, the specification of the dose can be anywhere in the

analytical expression. The name dose should be used unchanged. In the

computation of the Fisher information matrix, the dose given in each

elementary design will be used. If the user gives a value to the dose

directly in the model, then all elementary designs will have the same dose.

Example 1: PK model after multiple dose administration using an analytical

form with the library of models

source(file.path(directory.program,"LibraryPK.r"))

form1<-oral1_1cpt_kaVCl_md(N=1,tau=12) [[1]]

form2<-oral1_1cpt_kaVCl_md(N=2,tau=12) [[1]]

form3<-oral1_1cpt_kaVCl_md(N=3,tau=12) [[1]]

form4<-oral1_1cpt_kaVCl_md(N=4,tau=12) [[1]]

form5<-oral1_1cpt_kaVCl_md(N=5,tau=12) [[1]]

formA<-c(form1,form2,form3,form4,form5)

form<-c(formA)

Note: In this illustration, the user creates a one response model using the model

function implemented in the pharmacokinetic library (Oral1_1cpt_kaVCl) describing a

one compartment oral absorption after a multiple dose administration (md). N and

tau are the arguments to be specified by the user in the function model. Here,

there are five oral administration doses with an interval between two doses equal

to twelve hours. The vector of time intervals of each expression needs to be

defined in the input file:

boundA<-list(c(0,12),c(0,12)+12,c(0,12)+2*12,c(0,12)+3*12,c(0,12)+4*12)

31

Example 2: PD model using an analytical form with the library of models

source(file.path(directory.program,dirsep,"LibraryPD_PDdesign.r”))

formA<-immed_lin_null()[[1]]

form<-c(formA)

Note: In this illustration, the user creates a one response model using the model

function implemented in the library (immed_lin_null) describing an immediate

response model with a linear drug action and without baseline.

Example 3: PK model with a linear elimination and immediate response PD

model

source(file.path(directory.program,dirsep,"LibraryPK.r"))

source(file.path(directory.program,dirsep,"LibraryPD_PKPDdesign.r”))

formA<-bolus_1cpt_Vk()[[1]]

formB<-immed_lin_null(formA)[[1]]

form<-c(formA, formB)

Note: In this illustration the user creates for the PK model, a one compartment

model with bolus input and first order elimination for a single dose, and for the

PD model, an immediate response model with a linear drug action and no baseline is

used. As shown in the example, the PK model is given as an argument of the PD model.
Thus, in the PD model the drug concentration corresponds to the expression of the

PK model.

Example 4: PK model using an analytical form with user-defined expression

formA<-expression((dose/v*ka)/(ka-ke)*(exp(-ke * t) - exp(-ka*t)))

form<-c(formA)

Note: In this illustration, the user creates a one response model describing a one

compartment oral absorption with expression. The dose here needs to be specified in

the input file.

If the dose is defined directely in the model expression as below, all elementary

designs will have the same dose (100 dose unit).

formA<-expression((100/v*ka)/(ka-ke)*(exp(-ke * t) - exp(-ka*t)))

form<-c(formA)

4.2.2 Models defined in analytical form through an R function

Description

The R function for a PFIM model should take the following form:

formA<-function(t,p,X) {

. . .

}

The function has 3 arguments

- a vector of times t

- a vector of parameters p

- a scalar X which represents the dose

Within the function, the user can define local variables and use the

parameters provided in vector p. However, the header to the function and

32

its name must remain unchanged. The order of the parameters is provided by

the user through the parameter vectors in the stdin file. The function

returns a vector of predictions of each time point in t, computed using the

dose X and the parameters p.

Example 5: PK model after single dose administration using an analytical

form with user-defined R function

formA<-function(t,p,X){

ka<-p[1]

k<-p[2]

V<-p[3]

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t)))

return(y)

}

form<-formA

Note: In this illustration, the user creates a function of a one response model

describing a one compartment oral absorption.

Example 6: PK model after multiple dose administration using an analytical

form with user-defined R function

form<-function(t,p,X){

ka<-p[1]

V<-p[2]

Cl<-p[3]

N<-5

tau<-12

y<-0

for (n in 1:N)

 {

 indic<-t>=(n-1)*tau

 yn<-indic*(X/V*ka/(ka-Cl/V)*(exp(-Cl/V*(t - (n - 1) * tau))-exp(-ka*(t -

(n - 1) * tau))))

 y<-y+yn

 }

return(y)

}

Note: In this illustration, the user creates a function of one response model

describing a one compartment oral absorption after five administration doses with a

between dose interval equal to twelve hours. The number of doses and the between

dose interval are defined within the function. They can also be defined as fixed

parameters included in the vector p (see Section 5 for more details on fixed

parameters).

4.2.3 Models defined through a differential equation system

Description

Model defined as a solution of a differential equation system must be

called “formED” and can be called from the PFIM libraries or defined by the

users. In the latter case, the user need to write an R function in a format

suitable for the solver package deSolve and using the following form:

33

formED<-function(t,y,p)
{

 ...

 ...

 ...

}

Again the user may modify anything within this function but the name and

header must remain unchanged.

The function formED has 3 arguments:

- a vector of time t

- the current estimate of the variables in the ode system y

- a vector of parameters p

Within the function, the user has to define the name of the parameters in

vector p and the differential equation system.

The function returns a list with 2 elements:

- the first element is a vector giving the values of the derivatives

for each equation in the differential equation system, computed

for each time point in t using the parameters p

- the second element is a vector of predictions computed for each

time point in t using the parameters p; in PFIM, this vector

contains the response(s) we are observing

The initial values of the system have to be specified in the input file

stdin.r presented in the section 5, uder the name condinit.

The implementation of differential equations system requires the use of the

lsoda function included in the library “deSolve” (R. Thomas Petzoldt) and

of the fdHess function included in the library “nlme” developed by Jose

Pinheiro and Douglas Bates.

The lsoda function uses a function of the same name written in Fortran by

Linda R. Petzold and Alan C. Hindmarsh. This function solves system of

differential equations using the Adams method, a predictor – corrector

method for non-stiff systems; it uses the Backward Differentiation Formula

(BDF) for stiff systems. The fdHess is used for numerical derivation. It

evaluates an approximate gradient of a scalar function using finite

differences.

Example 7.1: PK model with bolus input using a differential equation form

from the library of models

source(file.path(directory.program,dirsep,"LibraryPK.r"))

formED<-bolus_1cpt_VVmkm()

Note: In this illustration, the user creates a one response model using the model

function implemented in the pharmacokinetic library (bolus_1cpt_VVmkm) describing a

one compartment bolus input with Michaelis-Menten elimination after a single dose

administration (sd). The dose is specified in a part of the R-script file stdin.r

(see section 5 for more input details):

time.condinit<-0

condinit<-expression(c(100)) # dose=100

34

Example 7.2: PK model with infusion input using a differential equation

form from the library of models

time.condinit<-0

condinit<-expression(c(0))

source(file.path(directory.program,dirsep,"LibraryPK.r"))

formED<-infusion_1cpt_VVmkm(doseMM=100, Tinf=1)

Note: In this illustration, the user creates a one response model using the model

function implemented in the pharmacokinetic library (infusion_1cpt_VVmkm)

describing a one compartment infusion input with Michaelis-Menten elimination after

a single dose administration (sd). The dose is specified as an argument of the PK

function in the file model.r, not in the initial condition described in a part of

the R-script file stdin.r.

Example 8: PK model using a differential equation system created by the

user

formED<-function(t,y,p)

{

 ka<-p[1]

 km<-p[2]

 Vm<-p[3]

 V<-p[4]

 yd1<--ka*y[1]

 yd2<-+ka*y[1]- V * (Vm * y[2]/(V * km + y[2]))

 list(c(yd1,yd2),c(y[[2]]/V))

 }

Note: This function formED implements a one compartment model with first order

absorption and Michaelis-Menten elimination. The dose is specified as an argument

of the PK function in the file model.r, not in the initial condition described in a

part of the R-script file stdin.r.

The first four lines in the body of the function assign model parameters from the

vector p. The next two lines describe the derivatives of the system (yd1 and yd2).

More specifically, each derivative represent the drug concentration in the specific

compartment at the instant t, and its elements can be either positive or

negative.The notation ydX denotes the derivative of the variable in compartment X

while the notation y[X] denotes the quantity in the same compartment (see

documentation for the deSolve package for details).The last line defines the

elements returned by the function:

- the first item is mandatory for the deSolve package, and should always

consist of a vector with the derivatives of the system (here, the two

elements yd1 and yd2)

- the second item defines the response, here the concentration in the second

(central) compartment which is defined by the quantity in this compartment

(y[2]) divided by the volume of distribution V. Several responses can be

given.

35

Example 9: PK model after multiple dose administration using a differential

equation system created by the user

formED<-function(t,y,p)

{

ka<-p[1]

V<-p[2]

Cl <-p[3]

tau<-12

input_oral1<-function(ka,V,dose,n,tau,t){

if(n==0){return(dose*ka/V*exp(-ka*t))}

else{return(dose*ka/V*exp(-ka*(t-

n*tau))+input_oral1(ka,V,dose,n-1,tau,t))}

}

n<-t%/%tau

input<-input_oral1(ka,V,dose,n,tau,t)

dy<--Cl/V*y[1]+input

list(c(dy),c(y[1]))

}

Note: In this illustration, the user creates a function of one response model

describing a one compartment oral absorption after multiple dose administration

with a between dose interval between two doses equal to twelve hours. The number of

doses and the between dose interval are defined within the function.

Example 10: PK model with bolus input, linear elimination and turnover

response PD model

source(file.path(directory.program,dirsep,"CreateModel_PKPDdesign.r"))

create_formED(bolus_1cpt_Vk,turn_input_Imax)

Note: In this example, the user creates a PK/PD model with a one compartment bolus

input for the PK and a turnover response model with an inhibition on the input for

the PD, using the function create_formED. The dose is specified as initial

condition of the differential equation system in the R-script file stdin.r.

Example 11: PK model with infusion input, Michaelis-Menten elimination and

immediate response PD model

source(file.path(directory.program,dirsep,"CreateModel_PKPDdesign.r"))

create_formED(infusion_1cpt_VVmkm,immed_lin_null,doseMM=100,TInf=1)

Note: In this illustration, the user creates a one response model using the model

function implemented in the pharmacokinetic library (infusion_1cpt_VVmkm)

describing a one compartment infusion input with Michaelis-Menten elimination after

a single dose administration (sd). The dose is specified as an argument of the PK

function in the file model.r, not in the initial condition in the R-script file

stdin.r.

36

5 Input

This section shows the common objects required for both design evaluation

and optimisation. One input file has to be filled called by default:

stdin.r.

In the file stdin.r, the following R objects must be created:

- project: character string indicating the name of the project

- file.model: character string indicating where to find the structural

model

- output: character string indicating in which file the results

should be printed

- outputFIM: character string indicating in which file the Fisher

information matrix should be saved

To specify evaluation or optimisation designs, the user has to complete the

“run” object:

- run: character string for function selection:

-“EVAL” for evaluation

-“OPT” for optimisation

According to the choice, specific objects notified below must be specified.

5.1 Option for Fisher information expression

You have to choose the option for the Fisher information matrix, that is

population, individual or bayesian and complete the “FIM” object:

- FIM: type of the Fisher information matrix:

 P for population

 I for individual

 B for Bayesian

In the case of population design (i.e., population Fisher matrix), you can

complete the “previous.FIM” object if previous information is available. If

it is not the case, leave it as the default.

- previous.FIM: character string indicating the name of the file

containing the previous information

To compute Fisher information matrix, you have to complete the “option”

object:

- option: type of option:

 1 for block diagonal Fisher information matrix

 2 for complete Fisher information matrix

Then, you have to complete the “nr” object:

- nr: value indicating the number of responses in the model

According to the choice, specific objects notified below must be specified.

37

5.2 Structural model option

- modelform: character string indicating either a model given under

differential equation systems (“DE”) or analytical form

(“AF”)

 For analytical model specification only

- dose.identical: logical value: ‘T’ if the dose is the same for all

elementary designs, ‘F’ if not.

- dose: value of the dose if dose.identical==T; if not,

vector

 of the q doses for each elementary design.

 If one uses infusion models implemented in the

library of models, the dose has to be specified here.

The rate of infusion is computed in the function

model by the expression: dose/TInf.

- boundi: vector of bounds specific to each response i with

i=A,B,C,…. If the model is defined over intervals by

different expressions, give in that vector, the

values of each time interval for the response i. The

first expression will be use for the first time

interval, the second expression for the second time

interval …

- NUM: logical value: ‘T’if using numerical derivatives,then

the model must be written by the user using R

function in model.r file, ‘F’ if not, then the model

is specified via the object "form" which is a vector

of expressions

For differential equations system specification only

- time.condinit: initial time at which initial conditions are given.

- condinit.identical: logical value: ‘T’ if the initial conditions are

the same whatever the elementary design, ‘F’if not.

- condinit: initial values of the system at the initial time,

given into an expression. If condinit.identical==T,

enter once the expression of the initial values of

the system at the initial time; else, enter the

vectors of the initial conditions for each

elementary design. If initial values depend on

parameters to be estimated, enter this parameter

into the expression without any quotation marks

- RtolEQ: relative error tolerance, either a scalar or an

array as long as ‘y’. See details in help for lsoda

function. Default value is 1e-06.

- AtolEQ: absolute error tolerance, either a scalar or an

array as long as 'y'. See details in help for lsoda

function. Default value is 1e-.06

38

- Hmax: an optional value for the maximum integration

stepsize. Default value is Inf.

From help for lsoda: “The input parameters 'RtolEQ', and 'AtolEQ' determine

the error control performed by the solver. The solver will control the

vector *e* of estimated local errors in *y*, according to an inequality of

the form max-norm of (*e*/*ewt*) <= 1, where *ewt* is a vector of

positive error

weights. The values of 'RtolEQ' and 'AtolEQ' should all be non-negative.

The form of *ewt* is:

RtolEQ * abs(*y*) + *AtolEQ*

where multiplication of two vectors is element-by-element.

If the request for precision exceeds the capabilities of the machine, the

Fortran subroutine lsoda will return an error code; under some

circumstances, the R function 'lsoda' will attempt a reasonable reduction

of precision in order to get an answer. It will write a warning if it does

so.”

5.3 Statistical model option

- parameters: vector of p character strings for the names of the fixed

effects parameters

- beta: vector of the p fixed effects parameters values

- beta.fixed: p-vector indicating if the parameter is estimated or not

- omega: vector of the p variances of the random effects should be

given

- n_occ: integer indicating the number of occasions. Example:

n_occ=2

- gamma: vector of the p variances of the random effects for

inter-occasion variability.

- sig.interi and sig.slopei: values of the parameters for the residual

variance error model given by var(εi)=(
ierint

 +
islope

 *fi)
2

for each response i, with i = A,B,C,….

- Trand: type of between-subject variance (or random effects)

model:

- 1 for additive between-subject variance model

- 2 for exponential model

If the user wants to deal with covariates which do not change with

occasion, he has to specify the following object.

39

- covariate.model: logical value; if T, covariates are added to the

model

If the user has filled in by T the previous object, he has to specify the

following objects:

- covariate.name: list of character indicating the name of the

covariate(s) Example:

 covariate.name<-list(c(“Gender”))

- covariate.category: list of vectors of categories. Each vector is

associated to one covariate and defines its

corresponding categories. They can be written as

character or integer. Example:

covariate.category<-list(Gender=c(“F”,”M”))

- covariate.proportions: list of vectors of proportions. Each vector is

associated to one covariate and defines the

corresponding proportions of subjects involved

in each corresponding categories. Example:

covariate.proportions<-list(Gender=c(0.5,0.5))

- parameter.associated: list of vectors of parameter(s) associated with

each covariate. Each vector is associated to one

covariate and is defined by the corresponding

parameters on which is added the covariate.

Example:

 parameter.associated<-list(Gender=c(Cl, V))

 Name of the parameter(s) has to be identical

to those entered in the object parameters.

- beta.covariate: list of the values of parameters for all other

categories than the reference category (for

which beta=0. Example:

 beta.covariate<-list(Gender=list(c(0.5,0.6)))

If the user wants to deal with covariates which change with occasion, he

has to specify the following object.

- covariate_occ.model: logical value; if T, covariates changing with

occasion are added to the model

If the user has filled in by T the previous object, he has to specify the

following objects:

- covariate_occ.name: list of character indicating the name of the

covariate(s) Example:

 covariate_occ.name<-list(c(“Treat”))

- covariate_occ.category: list of vectors of categories. Each vector is

associated to one covariate and defines its

corresponding categories. They can be written as

character or integer. Example:

covariate_occ.category<-list(Treat=c(“A”,”B”))

40

- covariate_occ.sequence: list of vectors of sequences. Each vector is

associated to one sequence of values of

covariates at each occasion. The size of each

sequence has to be equal to the number of

occasions (n_occ) for each covariate. Example:

 covariate_occ.sequence<-

list(Treat=list(c(“A”,”B”),c(“B”,”A”))

- covariate_occ.proportions: list of vectors of proportions. Each vector is

associated to one covariate and defines the

proportions of elementary designs corresponding

to each sequence of covariate values. The size

of each vector has to be equal to the number of

sequences. Example:

 covariate_occ.proportions<-

list(Treat=list(0.5,0.5))

- parameter_occ.associated: list of vectors of parameter(s) associated with

each covariate. Each vector is associated to one

covariate and is defined by the corresponding

parameters on which is added the covariate.

Example:

 parameter_occ.associated<-list(Treat=c(Cl))

 Name of the parameter(s) has to be identical

to those entered in the object parameters.

- beta.covariate_occ: list of the values of parameters for all other

categories than the reference category for which

beta=0. Example:

 beta.covariate_occ<-

list(Treat=list(c(log(1.1)))

5.4 Design

proti: list of vectors of elementary designs for each response i

with i = A,B,C,…. Each vector contains the sampling times

of the corresponding elementary design for the respective

response. The size of the vector for each response has to

be the same.

 For example, if there are two responses, the user must

specify:

 protA<-…

 protB<-…

 If there are several responses with several elementary

designs, the user can specify by NULL if a group do not

have samples for one response. Example:

 protA<-list(c(1,3,6,12),c(18,20,24))

 protB<- list(c(1,3,6,12),c(NULL))

 In the present version, the Fedorov-Wynn does not
work when there is a NULL design for one response.

41

- subjects: vector of the q numbers of subjects for each elementary design.

In the case of optimisation, this object is a vector of the q initial

proportions (if subjects.input=2) or of the numbers of subjects in each

elementary design (if subjects.input=1).

- subjects.input: 1 if the subjects per elementary designs are given as

numbers, 2 if they are given as proportions

- Ntot: total number of samples. Ntot is required if the subjects

per elementary design are given as proportions, i.e., only

if subjects.input=2

5.5 Objects required only for computation of power and number of

subjects needed

To compute the expected power to detect covariate effects as to

compute the number of subjects needed to achieve a given power, the

previous object covariate.model has to be filling in by T.

Additional R objects are required to be created.

The following object is needed for both options

- alpha: the value of the type one error for the Wald

test. Example: alpha<-0.05

It is possible to compute either the expected power only or the number of

subjects needed for a given power or both of them together.

- compute.power logical value, if T the expected power for

comparison test is computed for each covariate.

Example:

 compute.power<-T

- compute.nni logical value, if T the number of subjects

needed for a given power for comparison test is

computed for each covariate. Example:

 compute.nni<-T

- interval_eq vector of equivalence interval. Example:

interval_eq<-c(log(0.8),log(1.25))

- compute.power_eq logical value, if T the expected power for

equivalence test is computed for each covariate.

Example:

 compute.power_eq<-T

- compute.nni_eq logical value, if T the number of subjects

needed for a given power for equivalence test is

computed for each covariate. Example:

 compute.nni_eq<-T

42

- given.power the value of the given power for comparison

and/or equivalence test. Example:

 given.power<-0.9

5.6 Graph option

This list of objects allows to draw a graph with the evaluated design

(evaluation step) or the optimised design (optimisation step).

Options for plots of sensitivity functions have been added in version 4.0.

If the user wants a graph, he has to specify it in the following object.

- graph.logical: logical value; if T, draws the graph of the predicted

output(s) and the sampling times.

- graphsensi.logical: logical value; if T, draws the graph of the

sensitivity function (first order derivation of the model)

with respect to each parameter

The user can choose to display only the graphs of models and/or sensitivity

functions without computing the Fisher information matrix

- graph.only: logical value; if T, draws the graph of the predicted

output(s) and/or the sensitivity functions (no design

evaluation or optimisation)

If the user has filled in by T the previous object, he has to specify the

following objects.

- names.datax: character vector for the names of X axis for each graph

that corresponds to each type of measurement (the length

of this vector must be equal to the number of responses).

- names.datay: character vector for the names of Y axis for each graph

that corresponds to each type of measurement (the length

of this vector must be equal to the number of responses).

- log.logical: character string for controls logarithmic axes for the

graphical representation of the models. Values “xy”, “x”

or “y” produce log-log or log-x or log-y axes. Standard

graphic is given by log.logical<-F

- graph.infi and graph.supi: vector of lower and upper sampling times for

the graphs for each response i with i=A,B,C, …. For example

for a single response model, representation in the interval

[0-60] is specified by graph.infA<-c(0) and graph.supA<-

c(60). If any lower and upper sampling times for the graph

are specified, by default for each response the lower

sampling time is 0 and the upper sampling time is the

maximum sampling time of the initial design.

- y.range: vector of lower and upper values for the graphical

representations. They are identical of each response. By

default, the value is NULL. For example, representation in

1 interval [0-10] is specified by y.range=c(0,10).

5.7 Objects required only for optimisation

The user can optimise design with identical time in each elementary design

for each response. To trigger this option, the user needs to specify it in

the next objects:

43

- identical.times: T if identical sampling times for each response within

an elementary design else F

The choice of the algorithm is specify in the following object.

- algo.option: character string for algorithm selection. “SIMP” for

Simplex algorithm selection; “FW” for Fedorov-Wynn

algorithm selection

For each algorithm, the user need to specify particular objects described

below.

For Simplex algorithm specification only

- subjects.opt: logical value: ‘T’ is the optimisation of the proportions

or the number of subjects is required; ‘F’ if not.

- loweri and upperi: vector of lower and upper admissible sampling times

for each response i with i = A,B,C, …. For example if

there is a single response model, representation in 2

intervals [0-12], and [48-60] is specified by upperA<-

c(0,48) and lowerA<-c(12,60)

- delta.time: numeric value for the minimum delay between two successive

sampling times

- iter.print: logical value to print the iterations (T) or not (F)

- simplex.parameter: percent of change from initial design for the

initial vertices of the simplex algorithm building

(default 20%).

- Max.iter: a positive integer specifying the maximum number of

iterations allowed (default = 5000)

- Rctol: a positive numeric value specifying the tolerance level

for the relative convergence criterion of the Simplex

algorithm (default = 1e-6)

For Fedorov-Wynn algorithm only

- nwindi: numeric value for the number of sampling intervals for

each response i with i=A,B,C, …

- sampwini: list of vector of the allowed sampling times for each

sampling interval for each response i with i = A,B,C, …

- nsampi: list of vector of allowed numbers of points to be taken

from each sampling interval for each response i with i =

A,B,C, …

- fixed.timesi: list of times which will be in all evaluated protocols,

corresponding to fixed constraints for each response

i=A,B,C,…

- nmaxptsi: numeric value for the maximum number of sampling times per

subject for each response i with i = A,B,C, …

- nminptsi: numeric value for the minimum number of sampling times per

subject for each response i with i = A,B,C, …

44

 For Fedorov-Wynn algorithm use, the initial population design specified
in prot must involve elementary designs with number of samples per subject

and sampling times in accordance with sampwin, nsamp, nmaxpts and nminpts

for each response.

45

6 Output

The results are written in the output file called stdout.r by default or

with the name specified in the input file. This file is different when only

evaluation is performed or when optimisation is performed. It is detailed

in next sections respectively for evaluation and for optimisation.

6.1 Evaluation output file and objects

Figure 1 represents the output file from the design evaluation built on the

Example documentation in the sections 1.2.4 and 1.6.1.

The user can read on the Figure 1:

 The name of the function used: PFIM 4.0.

The name of the project and the date.

A summary of the input: response(s), the evaluated population or

individual/Bayesian design for each response, doses or initial conditions

(in case of models defined by differential equation system) and number of

subjects corresponding to those designs, between-subject variance model and

residual error model for each response(s), error tolerances for the solver

of differential equations system if used, name of the previous Fisher

information matrix if considered.

The figure 1 shows a one response model(written in user-defined model

form) with a group described by three sampling times for 200 subjects,

considering a previous Fisher information matrix. The parameter ka is fixed

(assuming no variability on ka) and the dose is equal to 100.

The population or individual or Bayesian Fisher information matrix, a

dim*dim symmetric matrix where dim is the total number of population

parameters to be estimated, the number of individual parametres + the

number of error model parameters or only the number of individual

parameters respectively. The name of the file where is possibly saved the

Fisher information matrix is given.

The value of each parameter with the expected standard error

(StdError) and relative standard error (RSE). In case of Bayesian design,

the associated shrinkages values are also reported.

The value of the determinant of the Fisher information matrix and the

value of the criterion (determinant
(1/dim)

) where dim is defined in

 The eigenvalues of the Fisher information matrix and the correlation

matrix.

4

2

3

5

6

1

7

4

46

PFIM 4.0

Project: Doc_example

Date: Fri Mar 21 13:02:23 2014

**************************** INPUT SUMMARY ********************************

Analytical function models :

function(t,p,X){

ka<-p[1]

k<-p[2]

V<-p[3]

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t)))

return(y)

}

Design:

Sample times for response: A

 times subjects doses

1 c(1, 3, 8) 200 100

Random effect model: Trand = 2

Variance error model response A : (0.5 + 0.15 *f)^2

Computation of the Population Fisher information matrix: option = 1

Previous FIM from file Previous_FIM.txt

FIM saved in FIM.txt

******************* FISHER INFORMATION MATRIX ******************

 V1 V2 V3 V4 V5 V6

[1,] 17523.1601 113.42921 0.0000 0.0000 0.0000 0.0000

[2,] 113.4292 11.91056 0.0000 0.0000 0.0000 0.0000

[3,] 0.0000 0.00000 1499.7312 228.5511 420.7733 594.9001

[4,] 0.0000 0.00000 228.5511 8988.9175 701.5138 2780.3955

[5,] 0.0000 0.00000 420.7733 701.5138 2114.1728 4049.3932

[6,] 0.0000 0.00000 594.9001 2780.3955 4049.3932 12315.5527

2

3

4

1

47

************************** EXPECTED STANDARD ERRORS ************************

------------------------ Fixed Effects Parameters -------------------------

 Beta StdError RSE

k 0.25 0.007798489 3.119395 %

V 15.00 0.299123566 1.994157 %

------------------------- Variance of Inter-Subject Random Effects --------

 omega² StdError RSE

k 0.25 0.02669459 10.67783 %

V 0.10 0.01098554 10.98554 %

------------------------ Standard deviation of residual error -------------

 Sigma StdError RSE

sig.interA 0.50 0.03670921 7.341841 %

sig.slopeA 0.15 0.01527153 10.181022 %

******************************* DETERMINANT ********************************

2.199791e+19

******************************** CRITERION *********************************

1673.903

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ***********

 FixedEffects VarianceComponents

min 15109.231479 11.17585

max 17523.894830 1509.84067

max/min 1.159814 135.09852

******************* CORRELATION MATRIX ******************

 [,1] [,2] [,3] [,4] [,5] [,6]

V1 1.0000000 -0.2482863 0.00000000 0.00000000 0.00000000 0.00000000

V2 -0.2482863 1.0000000 0.00000000 0.00000000 0.00000000 0.00000000

V3 0.0000000 0.0000000 1.00000000 -0.04548621 -0.21289290 0.09121384

V4 0.0000000 0.0000000 -0.04548621 1.00000000 0.09083326 -0.23035289

V5 0.0000000 0.0000000 -0.21289290 0.09083326 1.00000000 -0.78714187

V6 0.0000000 0.0000000 0.09121384 -0.23035289 -0.78714187 1.00000000

Figure 1. Example of design evaluation output file

5

6

7

48

6.2 Optimisation output file and objects

Figure 2 represents the output file corresponding to the optimal Bayesian

design described in the Example documentation in the section 1.3.2.

The user can read on the Figure 2:

The name of the function used: PFIM 4.0

The name of the project and the date.

A summary of the input: structural model, between-subject and error

variance model, initial design, initial numbers or proportions of subjects

and doses, total number of allowed samples, criterion associated to the

initial design.

Sampling times specifications (according to the algorithm used)

within which the optimal samples will be chosen and error tolerances for

the solver of differential equations system if used.

The optimised design and the associated criterion.

For the simplex algorithm, the number of iterations performed and the

number of function evaluations, the status of the convergence (false or

achieved) are reported

For the Fedorov-Wynn algorithm for optimal population design, the

optimal group structure with the proportion of subjects and the equivalence

in number are then reported. The best one group protocol is also always

reported with associated criterion.

When optimising a Bayesian or an individual design, the resulted

design correspond to the best one group protocol.

The population or individual or Bayesian Fisher information matrix, a

dim*dim symmetric matrix where dim is the total number of population

parameters to be estimated, the number of individual parametres + the

number of the error model parameters or only the number of individual

parameters respectively. The name of the file where is possibly saved the

Fisher information matrix is given.

The value of each parameter with the expected standard error

(StdError) and relative standard error (RSE). In case of Bayesian design,

the associated shrinkages values are also reported.

The value of the determinant of the Fisher information matrix and the

value of the criterion (determinant^(1/dim)) where dim is defined in

 The eigenvalues of the Fisher information matrix and the correlation

matrix.

1

2

5

4

6

5

3a

3b

 7

8

49

PFIM 4.0

Project: Example Optimisation

Date: Thu Jul 31 09:22:17 2014

**************************** INPUT SUMMARY ********************************

Analytical function model:

function(t,p,X){

ka<-p[1]

k<-p[2]

V<-p[3]

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t)))

return(y)

}

Initial design:

Sample times for response: A

 Protocol subjects doses

1 c=(0.33, 1.5, 5, 12) 1 100

Total number of samples: 4

Associated criterion value: 3.5272

Identical sampling times for each response: FALSE

Random effect model: Trand = 2

Variance error model response A : (0.5 + 0.15 *f)^2

Optimization step:

Sampling windows for the response: A

Window 1 : t= 0.33 1 1.5 3 5 8 12

 Nb of sampling points to be taken in this window, n[1]= 4

Maximum total number of points in one elementary protocol : 4

Minimum total number of points in one elementary protocol : 4

BEST ONE GROUP PROTOCOL:

Sample times for response: A

 times freq Subjects doses

1 c(0.33, 1.5, 5, 8) 1 1 100

Associated criterion: 3.8066

1

2

4

3b

3a

50

Computation of the Bayesian Fisher information matrix

FIM saved in FIM.txt

******************* FISHER INFORMATION MATRIX ******************

 [,1] [,2] [,3]

[1,] 1.590507 2.096455 -0.2426030

[2,] 2.096455 354.843266 4.4964361

[3,] -0.242603 4.496436 0.2013882

************************** EXPECTED STANDARD ERRORS ************************

------------------------ Fixed Effects Parameters -------------------------

 Beta StdError RSE Shrinkage

ka 2.00 0.9638509 48.19255 % 23.22522 %

k 0.25 0.0688475 27.53900 % 30.33586 %

V 15.00 3.1862487 21.24166 % 45.12080 %

******************************* DETERMINANT ********************************

55.15913

******************************** CRITERION *********************************

3.806617

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ******************

 FixedEffects VarianceComponents

min 9.552493e-02 NA

max 3.549127e+02 NA

max/min 3.715393e+03 NA

******************* CORRELATION MATRIX ******************

 [,1] [,2] [,3]

[1,] 1.0000000 -0.4133690 0.5638373

[2,] -0.4133690 1.0000000 -0.6330761

[3,] 0.5638373 -0.6330761 1.0000000

Figure 2. Example of design optimisation output file

Moreover, the PFIM() function returns the following R objects:

- mfisher: the population or individual or Bayesian Fisher

information matrix corresponding to the optimised protocole

- determinant: the determinant of the Fisher information matrix

- crit: the value of the criterion

- se: the vector of the expected standard errors for each parameter

- cv: the corresponding coefficient of variation, expressed in

percent (relative standard error)

- sh: the shrinkage values for each parameter in case of Bayesian

design

- EigenValues: the eigenvalues of the Fisher information matrix

- corr.matrix: the correlation matrix

5

6

7

8

51

6.3 Comments

o It is now possible to visualise the graphs of the model and the

sensitivity functions without performing evaluation or optimisation (see

Example Documentation)

o For an infusion model, it is not possible for design evaluation to

include the time at the end of the infusion when the end of infusion

parameter is a parameter to be estimated.

o If the bound are not correctly specified according to the number of

responses in case of analytical form expression, by default bounds are

initialized to c(0, Inf) but that does not appear on the stdin.r file.

In case of analytical form defined by R function or of differential

equation system, the bound is not used.

o If the between-subject variance of a parameter is assumed to be zero,

enter 0 for this variance in omega: PFIM will remove the corresponding

row and column in the Fisher information matrix.

o If a parameter is fixed, no variability is assumed and no shrinkage is

computed for this parameter

o The number of subjects for each elementary design is the same for all

the response(s)

o Optimisation with the Fedorov-Wynn algorithm can be performed with an

initial design composed of several groups with different doses or

initial conditions and with fixed sampling times

o The dimension of the previous Fisher information matrix is the same as

the current Fisher information matrix. The previous Fisher information

matrix can be taken into account in evaluation and in optimisation with

Simplex algorithm or for best one group protocol

o If a design leads to very poor information with a singular population

Fisher information matrix (det=0), the expected standard errors and the

RSE are returned as NA.

o Standard error of derived parameters can be computed by the delta method

available in the R package “car”, using the FIM stored in files or

directly obtained in R console after running PFIM (see Example

documentation Section 1.5 for detailed examples)

52

7 References

1. Mentré F, Chenel M, Comets E, Grevel J, Hooker A, et al. (2013) Current

Use and Developments Needed for Optimal Design in Pharmacometrics: A

Study Performed Among DDMoRe’s European Federation of Pharmaceutical

Industries and Associations Members. CPT Pharmacomet Syst Pharmacol 2:

e46. doi:10.1038/psp.2013.19.

2. Nyberg J, Bazzoli C, Ogungbenro K, Aliev A, Leonov S, et al. (2014)

Methods and software tools for design evaluation for population

pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol.

doi:10.1111/bcp.12352 [Epub ahead of print].

3. Retout S, Duffull S, Mentré F (2001) Development and implementation of

the population Fisher information matrix for the evaluation of

population pharmacokinetic designs. Comput Methods Programs Biomed 65:

141–151.

4. Bazzoli C, Retout S, Mentré F (2010) Design evaluation and optimisation

in multiple response nonlinear mixed effect models: PFIM 3.0. Comput

Methods Programs Biomed 98: 55–65. doi:10.1016/j.cmpb.2009.09.012.

5. Nguyen TT, Bazzoli C, Mentré F (2012) Design evaluation and

optimisation in crossover pharmacokinetic studies analysed by nonlinear

mixed effects models. Stat Med 31: 1043–1058. doi:10.1002/sim.4390.

6. Dumont C, Chenel M, Mentré F (2014) Two-stage adaptive designs in

nonlinear mixed effects models: application to pharmacokinetics in

children. Commun Stat Simul Comput [Epub ahead of print].

7. Combes FP, Retout S, Frey N, Mentré F (2013) Prediction of shrinkage of

individual parameters using the bayesian information matrix in non-

linear mixed effect models with evaluation in pharmacokinetics. Pharm

Res 30: 2355–2367. doi:10.1007/s11095-013-1079-3.

8. Mentré F, Mallet A, Baccar D (1997) Optimal design in random-effects

regression models. Biometrika 84: 429–442. doi:10.1093/biomet/84.2.429.

9. Retout S, Mentré F (2003) Further developments of the Fisher

information matrix in nonlinear mixed effects models with evaluation in

population pharmacokinetics. J Biopharm Stat 13: 209–227.

doi:10.1081/BIP-120019267.

10. Bazzoli C, Retout S, Mentré F (2009) Fisher information matrix for

nonlinear mixed effects multiple response models: evaluation of the

appropriateness of the first order linearization using a

pharmacokinetic/pharmacodynamic model. Stat Med 28: 1940–1956.

doi:10.1002/sim.3573.

11. Nelder JA, Mead R (1965) A Simplex Method for Function Minimization.

Comput J 7: 308–313. doi:10.1093/comjnl/7.4.308.

12. Fedorov VV (1972) Theory Of Optimal Experiments. Academic Press: New

York.

13. Wynn HP (1972) Results in the theory and construction of D-optimum

experimental designs. J R Stat Soc Series B 34:133–147.

14. Retout S, Comets E, Samson A, Mentré F (2007) Design in nonlinear mixed

effects models: optimization using the Fedorov-Wynn algorithm and power

53

of the Wald test for binary covariates. Stat Med 26: 5162–5179.

doi:10.1002/sim.2910.

15. Bertrand J, Mentré F (2008) Mathematical expressions of the

pharmacokinetic and pharmacodynamic models implemented in the MONOLIX

software. MONOLIX Software Documentation. www.lixoft.eu.

