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Disclaimer 

 

We inform users that the PFIM 4.0 is a tool developed by the Laboratory 

“Biostatistics-Investigation-Pharmacometrics” - UMR 1137 INSERM and 

University Paris Diderot, under R and GCC.  

 

PFIM 4.0 is a library of functions. The functions are published after a 

scientific validation.  

 

However, it may be that only extracts are published.   

 

By using this library of functions, the user accepts all the conditions of 

use set forth hereinafter. 

 

 

Licence 

 
This program is free software: you can redistribute it and/or modify it under 

the terms of the GNU General Public License as published by the Free Software 

Foundation, either version 3 of the License, or (at your option) any later 

version. 

 

You should have received a copy of the GNU General Public License along with 

this program.  If not, see  

<http://www.gnu.org/licenses/>. 

 

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 

UNIVERSITE PARIS DIDEROT OR INSERM OR ITS CONTRIBUTORS BE LIABLE FOR ANY 

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGE. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted under the terms of the GNU General Public 

Licence and provided that the following conditions are met: 

 

1. Redistributions of source code must retain the above copyright notice, 

this list of conditions and the following disclaimer. 

 

2. Redistributions in binary form must reproduce the above copyright 

notice, this list of conditions and the following disclaimer in the 

documentation and/or other materials provided with the distribution. 

  

3. The end-user documentation included with the redistribution, if any, 

must include the following acknowledgment: "This product includes software 

developed by Université Paris Diderot and INSERM (http://www.biostat.fr)." 

Alternately, this acknowledgment may appear in the software itself, if and 

wherever such third-party acknowledgments normally appear. 

  

4. The names "PFIM" must not be used to endorse or promote products derived 

from this software without prior written permission. For written 

permission, please contact france.mentre@bichat.inserm.fr. 

  

http://www.gnu.org/licenses/
http://www.biostat.fr)/
mailto:france.mentre@bichat.inserm.fr


5. Products derived from this software may not be called "PFIM", nor may 

"PFIM" appear in their name, without prior written permission of the 

Université Paris Diderot and INSERM.  

 

 

Copyright © PFIM 4.0 – Giulia Lestini, Thu Thuy Nguyen, Cyrielle Dumont, 

Caroline Bazzoli, Sylvie Retout, Hervé Le Nagard, Emmanuelle Comets and 

France Mentré - Université Paris Diderot – INSERM. 
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1 Introduction 
 

 

Model based optimal design approaches are increasingly performed in 

population pharmacokinetic/pharmacodynamics (PKPD) [1], which consist in 

determining a balance between the number of subjects and the number of 

samples per subject, as well as the allocation of times and doses, 

according to experimental conditions. A good choice of design is crucial 

for an efficient estimation of model parameters, especially when the 

studies are conducted in patients where only a few samples can be taken per 

subject. These approaches rely on the Fisher information matrix (FIM) for 

nonlinear mixed effect models (NLMEM), available in several software tools 

[2] and are a good alternative to clinical trial simulation. They require a 

priori knowledge of the model and its parameters, which can usually be 

obtained from previous experiments. 

PFIM (www.pfim.biostat.fr), developed in our group, is the first tool for 

design evaluation and optimisation that has been developed in R. It is 

available since 2001 [3] and was extended in version 3 to multi-response 

models, inter-occasion variability, discrete covariates with prediction of 

power of Wald test [4,5]. The current version 4, released in Spring 2014, 

added several new features.  

 

In this new version, for population designs, optimisation can be performed 

with fixed parameters or fixed sampling times. The Fisher information 

matrix obtained after evaluation or optimisation can be saved in a file. 

Previous information already obtained can be assumed and loaded through a 

predicted or an observed Fisher information matrix, which is important in 

the perspective of performing adaptive designs [6]. Additional features for 

Bayesian designs are now available. The Bayesian Fisher information matrix 

has been implemented. Design for maximum a posteriori estimation of 

individual parameters can be evaluated or optimised and the predicted 

shrinkage is also reported [7]. A new way has been added to specify user-

defined models through an R function. It is now possible to visualise the 

graphs of the model and the sensitivity functions without performing 

evaluation or optimisation.  

 

This documentation describes the methodology implemented in PFIM 4.0 in 

Section 2. Section 3 explains how to install and use PFIM. Section 4 

describes how to specify models, either by using the PKPD library or the 

user-defined model option. Lastly sections 5 and 6 present the input and 

output of PFIM.  

  

http://www.pfim.biostat.fr/
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2 Methodology 

 

 

2.1 Design 

 

The elementary design    of individual i (       ) is defined by the number 

   of samples and their allocation in time (          ).  
For N individuals, the population design is composed of the N elementary 

designs such as   {       }. Usually, population designs are composed of a 
limited number Q of groups of individuals with identical design    within 

each group, performed in a number    of individuals. The population design 

can thus be written as   {[     ]   [     ]}. 
Individual and Bayesian designs include only one elementary design. 

 

 

2.2 Nonlinear mixed effects models 

 

 

A nonlinear mixed effects model, or a population model, is defined as 

follows. The vector of observations    for the individual i           is 
defined as  

 

              , 
 

where the function f defines the nonlinear structural model,    is the 

vector of the p-individual parameters for individual i,    is the elementary 
design of individual i and    is the vector of residual error.  
The vector of individual parameters    depends on μ, the p-vector of the 
fixed effects parameters and on bi, the p-vector of the random effects for 

individual i. The relation between    and (μ,bi) can be additive for a 

normal distribution of parameters, that is 

 

       , 
 

or exponential for a lognormal distribution of parameters so that 

 

             . 
 

It is assumed that           with   defined as a     diagonal variance-
covariance matrix, for which, each diagonal element   ,        , represents 

the inter-individual variability of the     component of the vector bi.  
It is also supposed that           , where    is a      -diagonal matrix such 
that 

 

  (                     )                              
 . 

 

The terms        and        are the additive and proportional parts of the 

error model, respectively. Conditionnally on the value of   , it is assumed 
that the    errors are independently distributed. 
 

In the case of K multiple responses, the vector of observations    can then 
be composed of  K vectors for the different responses:  

 

   [   
     

       
 ] , 
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where    ,        , is the vector of     observations for the  
   response. 

Each of these responses is associated with a known function fk, which can 

be grouped in a vector of multiple response model F, such as 

 

         [          
            

              
 ] , 

 

where    is composed of K sub-designs such that                   . The sub-

design     is then defined by (                  ), with     sampling times for the 

observations of the k
th
 response, so that    ∑    

 
   . 

Each response can have its error model and    is then the vector composed of 
the K vectors of residual errors    ,        , associated with the K 

responses.  

 

 

 

Inter-occasion variability specification  

 

The expression of the nonlinear mixed effects model has been extended for 

model including additional random effects for inter-occasion variability 

(or within subject variability) [5].  

The individual parameters of an individual i at occasion h are thus 

expressed by the following relation, which can be additive as 

 

             
 

or exponential as 

 

                   
 

where 

 is, as previously, the p-vector of fixed effects, ib

 the vector of 

random effects associated to the individual i and     the vector of random 
effects associated to the individual i for the occasion h (        with H 

the number of occasions). ib  and     are supposed independent. It is assumed 
that           and            with   and   defined as diagonal matrices of 
size    . Each element    of   and    of   represent the inter-individual 

variability of the j
th 

component of ib
 and the inter-occasion variability of 

the     component of    , respectively.  
 

This new development was performed for any number of occasions H. It is 

implemented in PFIM for the case where same elementary designs are used at 

each occasion.  

 

 

Discrete covariate specification  

 

The present expression of nonlinear mixed effects models accommodates 

models with parameters quantifying the influence of discrete covariates. 

Two or more categories can be included. In PFIM 3.2, it can be assumed 

either that covariates are additive on parameters if the random effect 

model is additive, or that covariates are additive on log parameters if the 

random effect model is exponential. 

For instance, the individual parameter    is described as the function of a 
discrete covariate   , which takes D values defining D categories, with 

additive effect model:  

 

     ∑  
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where here     is defined as the reference group and     . 
For each covariate, the user has to specify  , i.e. the vector of covariate 
effect coefficients and the proportions of subjects associated to the D 

categories.  

It can be specified if covariates change or not through the different 

occasions. In the latter case, additional objects are needed: the vector of 

sequences of values of each covariate at each occasion and the vector of 

proportions of the elementary designs corresponding to each sequence of 

covariate values (see Section 5 for input specification).  

The number of covariates, the number of parameters associated to each 

covariate as well as the number of categories for each covariate, are not 

limited. In PFIM, the distributions of the covariates are supposed 

independent. 

 

 

 

2.3 Fisher information matrix 

 

 

2.3.1 Population Fisher information matrix 

2.3.1.1  Expression 

 

The population Fisher information matrix  ,FM    for multiple response 

models, for an individual with an elementary design  , with the vector of 

population parameters  , is given as: 

 

 
( , ) ( , )1

,
( , ) ( , )2

F T

A E V C E V
M

C E V B E V

 
    

 
 

 

with E and V the approximated marginal expectation and the variance of the 

observations of the individual. The vector of population parameter   is 

defined by            with   the p-vector of the fixed effects and   the 
vector of the variance terms.    is given as a block matrix (more details 
are given in [8–10]) with:  

 

1 1 1( ( , )) 2 ( )     
 

   

T

ml

m l l m

E E V V
A E V V tr V V

   
 with m  and 1, ,l p  

 

1 1( ( , )) ( )  


 
ml

m l

V V
B E V tr V V

 
  with m  and  1, ,diml    

 

1 1( ( , )) ( )  


 
ml

l m

V V
C E V tr V V

 
 with  1, ,diml   and 1, ,m p  

 

 

If the dependence of V in   is neglected so that 0
V







, the population 

Fisher information matrix is a block diagonal matrix that is to say the 

block C of the matrix is supposed to be 0. Also, the block A is simplified 

and expressed as:  
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1( ( , )) 2  


 

T

ml

m l

E E
A E V V

 
 with m  and 1, ,l p  

 

Based on publications showing the better performance of the block diagonal 

expression compared to the full one with linearisation [2], the default 

option in PFIM is the block diagonal information matrix. However, since 

PFIM 3.2, the user can choose to compute either a full or a block diagonal 

matrix for models without covariate and inter-occasion variability. The 

size of the block C and the block B of the expression of the Fisher 

information matrix are thus modified to incorporate the within subject 

variabilities  .  
 

 

Prediction of standard errors 

 

According to the inequality of Cramer-Rao, the inverse of MF is the lower 

bound of the variance-covariance matrix of any unbiased estimate of the 

parameters. From the square roots of the diagonal elements of the inverse 

of MF, the predicted standard errors (SE) for estimated parameters can be 

calculated. 

  

 

2.3.1.2  Computation of power and number of subjects needed  

 

Comparison test 

 

Computation of the expected power. The Wald test can be used to assess the 

difference of a covariate effect β. In PFIM, the Wald test is performed on 

the   of each category for each covariate; a global Wald test on the vector 
  (all effect coefficients) is not implemented.  
For one covariate and an effect of one category β (D=2), the null 

hypothesis is H0: {β=0} while the alternative hypothesis is H1: {β≠0}. The 

statistic of the Wald test is defined as, 

( )









WS

SE

 with 


  the covariate 

effect estimates and ( )


SE  its associated standard error. Under H1, when 

β=β1, we then compute the power of the Wald test defined as: 

  

1 1
1 2 1 2

1 1

1
( ) ( )

diffP z z
SE SE

 

    
         

    
    (1) 

 

where Ф is the cumulative distribution function of the standard normal 

distribution and 
2z  is such that  2 1 2  z .  

Using the covariate effect    fixed by the user, the corresponding standard 

error  1( )SE  is predicted since PFIM 3.2 for a given design and the values 

of population parameters.  

 

Computation of the number of subjects needed. The number of subjects needed 

to achieve a power P to detect a covariate effect using the Wald test is 

also computed. First, from the equation (1), we compute the SE needed on β 

to obtain a power of P, called NSE(P), using the following relation: 

 

 
1

1

2

( )
1

NSE P
z P






 
     (2) 
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Last, we compute the number of subjects needed to be included to obtained a 

power of P, called NNI(P) using 

 

 1( )
( )


 

SE
NNI P N

NSE P
                         (3) 

 

where N is the initial number of subjects in the given design and  1SE  the 

corresponding predicted SE of β for the given design. 

 

 

Equivalence test 

 

Computation of the expected power. The Wald test can be used to assess the 

equivalence of a covariate effect β. 

In PFIM, the Wald test is performed on the β of each category for each 

covariate, a global Wald test on the vector β (all effect coefficients) is 

not implemented.  

For one covariate and an effect of one category β (D=2), the null 

hypothesis is H0: {β≤-∆L or β≥+∆L} while the alternative hypothesis is H1: 

{-∆L≤β≤+∆L}. H0 is composed of two unilateral hypothesis 
L0,H  :{β≤-∆L} and 

L0,H  :{β≥+∆L}. Equivalence between two covariate effects can be concluded if 

and only if the two hypotheses 
L0,H   and 

L0,H   are rejected.  

The two statistics of the unilateral Wald test under the null hypothesis 

are defined as, 

^

( )
L

L
WS

SE
 

 




 and 

^

( )
L

L
WS

SE
 






 with 


  the covariate effect 

estimates and, its associated standard error. Under H1, when β=β1 with β1 Є 

[-∆L, ∆L], we then compute the power of the equivalence Wald test defined 

as: 

 

 1
1 1

1

1 ,0
( )

L
equi LP z if

SE


   
      

 
                      (4) 

                     1
1 1

1

0,
( )

L
equi LP z if

SE


  
       

 
                       (5) 

 

where Ф is the cumulative distribution function of the standard normal 

distribution and z  is such that   1z   .  

In equivalence test β1 is usually chosen to be zero.   

 

Using the covariate effect    fixed by the user, the corresponding standard 

error  1( )SE  is predicted since PFIM 3.2 for a given design and the values 

of population parameters.  

 

 

Computation of the number of subjects needed. The number of subjects needed 

to achieve a power P to show equivalence between two covariate effects 

using the Wald test is also computed. First, from equations (4) and (5), we 

compute the SE needed on β to obtain a power of P, called NSE(P), using the 

following relation: 

 
 

 
 1

11
,0

1

L

LNSE P if
z P



 
   
  

                    (6) 
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 
 

 
 1

11
0,L

LNSE P if
z P



 
   


                       (7) 

where Ф is the cumulative distribution function of the standard normal 

distribution and z  is such that   1z   .  

 

Last, we compute the number of subjects needed to be included to obtained a 

power of P, called NNI(P) using the equation (3) like for comparison test.  

 

 

2.3.1.3  Previous information 

 

New feature: An option to load previous information through a predicted or 

an observed Fisher information matrix is now available in PFIM 4.0. 

Evaluation and optimisation are then performed combining the previous 

information matrix with the current Fisher information matrix, following 

the principle of adaptive designs [6]. 

 

Taking into account previous information, the new computation of the Fisher 

information matrix is then:  

 ),(MM FprevF 




N

i

i

1

  

 

where 
prevFM  denotes the previous Fisher information matrix. 

Note that the previous Fisher information matrix should have the same 

dimension as the current Fisher information matrix. 

 

It is now possible to save the Fisher information matrix corresponding 

to an evaluated or optimised design. 

 

 

 

 

2.3.2 Bayesian Fisher information matrix 

 

New feature: The new version 4.0 of PFIM enables design evaluation and 

optimization for maximum a posteriori estimation of individual parameters 

based on the Bayesian Fisher information matrix [7]. 

 

We are interested in the precision estimation of individual parameters for 

a subject i, associated to the vector of observation y (index i being 

omitted). These individual parameters can be estimated by maximum a 

posteriori (MAP). As   is known, estimating   is similar to estimating  . 
More precisely, the MAP estimate of   is given by   

    )(log) |(log argmax
)(

)() |(
 argmax))y |(( argmaxˆ 


 pyp

yp

pyp
p 








  

where p is the probability density. The Bayesian Fisher information matrix, 

taking into account the a priori distribution of the random effects, is 

expressed as 

     

  1

22

 |

2

)),,((

)(log) |(log)y |(log
)(











































































gME

p
E

yp
EE

p
EM

IF

TTyTBF  
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where
 















TyIF

yp
EM






) |(log
),(

2

, expression of the individual Fisher 

information matrix in classical nonlinear regression models. The 

expectation  )),,((  gME
IF

 can be obtained by first order approximation 

of the model around the expectation of random effects (i.e., 0).  

The shrinkage (Sh) is quantified from the ratio of the estimation variance 

predicted by MBF
-1 

and the a priori variance, and can be calculated as the 

diagonal elements of the matrix 11
)()(

  
BF

MWI   (see [7] for more 

details). 

 

When a parameter has an a priori variance equal to 0, it will be 

considered as fixed to the mean value and no predicted shrinkage will be 

computed.   
 

 

 

2.4 Design evaluation 

 

Population, individual and Bayesian design evaluation is based on the 

computation of the population, individual and Bayesian Fisher information 

matrix, respectively. During this process, the expected standard errors on 

the population or individual parameters with the design are evaluated. The 

user can choose to fix one or several parameters in the model that will not 

be computed in the Fisher information matrix. 

Eigenvalues and conditional number are given by default. When considering 

design for Bayesian estimation of individual parameters, the shrinkages are 

also reported.  

The computed Fisher information matrix can be saved in a file if requested.  

 

 

 

2.5 Design optimisation 

 

Algorithms are required to optimise exact or statistical designs. In the 

case of an exact optimisation, the group structure of the design is fixed: 

the number of elementary designs, the number of samples per elementary 

design and the number of subjects per elementary design are given and the 

design variables to optimise are only the sampling times. In the case of 

statistical optimisation, the sampling times (number and allocation) and 

the proportions of subjects in each elementary design are optimised. 

PFIM optimises population design using the D-optimal criterion, i.e. 

maximising the determinant of the population Fisher information matrix, or, 

similarly, minimising its inverse.  

The Fedorov-Wynn algorithm has been implemented since PFIM 3.0 in addition 

to the Simplex algorithm. Compared to the Simplex algorithm, the Fedorov-

Wynn algorithm better affords high design variables optimisation. Moreover, 

it considers only pre-specified sampling times, avoiding, clinically 

unfeasible sampling times. The drawback is the huge number of elementary 

designs to be created (with corresponding huge number of Fisher information 

matrices to compute) when the set of allowed sampling times is very large. 
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2.5.1 Simplex algorithm 

 

The Simplex algorithm optimises statistical or exact designs in constrained 

intervals, given a total number of samples.  

An initial population design needs to be supplied to start the 

optimisation. The maximum number of elementary designs and the number of 

sampling times per elementary design are fixed, the sampling times and the 

proportions of subjects in each elementary design are then optimised. From 

this initial design, initial vertices for the simplex algorithm are 

derived, reducing successively each component by 20% (a default value which 

can be changed) from the original component. 

PFIM uses the Splus function “fun.amoeba” from Daniel Heitjan (revised 

12/94), which is a translation from the Numerical Recipes for Nelder and 

Mead Simplex function [11].  

Note that it is now possible to take into account previous information 

through a predicted or an observed Fisher information matrix to optimise 

designs with this algorithm. 

 

 

2.5.2 Fedorov-Wynn algorithm 

 

The Fedorov-Wynn algorithm is specifically dedicated to design optimisation 

problems and has the property to converge towards the D-optimal design [12–

14]. It optimises statistical designs for a given total number of samples. 

The sampling times are chosen among a given finite set of times. Minimum 

and maximum numbers of samples per subject are specified.  

To start the algorithm, an initial population design is then required. 

The Fedorov-Wynn algorithm is programmed in a C code and is linked to PFIM 

through a dynamic library, called libFED.dll and libFED64.dll for R 32-bit 

and 64-bit respectively. Moreover, PFIM uses the function combn in the R 

package “combinat”.  

 

New feature: The best one group protocol, which maximises the determinant 

of the elementary Fisher information matrix of all elementary protocols 

chosen among the predefined set of samples, is given by default when 

running Fedorov-Wynn algorithm (before calling the dynamic library). This 

is the optimal protocol for individual design and Bayesian design. 

Moreover, in PFIM 4.0, optimisation with Fedorov-Wynn algorithm can be 

performed assuming that some sampling times are fixed. 
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3 Use 

3.1 Pre-requirement 

 

The software R is required. To use PFIM 4.0, additional packages are needed 

in the R library directory: 

- for differential equation system to describe the model: “deSolve” 

and “nlme” packages 

- for the Fedorov-Wynn algorithm: “combinat” package 

An additional package “numDeriv” is needed for the computation of the 

full Fisher information matrix and for numerical derivatives of models 

written as standard R functions. 

 

The easiest way to install packages is directly from the web. To install 

the packages deSolve, nlme, combinat and numDeriv, start R and choose the 

Packages item from the menu. Choose Install package(s) from CRAN to install 

from the web (you will see a list of all available packages pop up -- 

choose deSolve, nlme, combinat and numDeriv). 

To install PFIM 4.0, the user has to download the function named PFIM 4.0 

available on the webpage www.pfim.biostat.fr.  

 

 

3.2 Components 

 
PFIM 4.0 includes two main folders called:  

 PFIM 4.0  

 Examples 

 

The folder PFIM 4.0 is composed of 3 principal files and one folder:  

- The 3 principal files are: 

o The main function (program) file (PFIM.r) 

o The input file (stdin.r) 

o The model file (model.r). 

 

 The folder is called Program and contains the files of functions: 

o Pfim4.0op1.r: To compute the block diagonal Fisher 

Information matrix (option 1) to evaluate a population, 

individual or Bayesian design using an analytical form to 

describe the model. 

o PfimOPT4.0op1.r: To compute the block diagonal Fisher 

Information matrix (option 1) to optimise a population, 

individual or Bayesian design using an analytical form to 

describe the model 

o EQPfim4.0op1.r: To compute the block diagonal Fisher 

Information matrix (option 1) to evaluate a population, 

individual or Bayesian design using a differential equation 

system to describe the model 

o EQPfimOPT4.0op1.r: To compute the block diagonal Fisher 

Information matrix (option 1) to optimise a population, 

individual or Bayesian design using a differential equation 

system to describe the model 

o Pfim4.0op2.r: To compute the full Fisher Information matrix 

(option 2) to evaluate a population design using an analytical 

form to describe the model. 

o PfimOPT4.0op2.r: To compute the full Fisher Information 

matrix (option 2) to optimise a population design using an 

analytical form to describe the model 

http://www.pfim.biostat.fr/
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o EQPfim4.0op2.r: To compute the full Fisher Information 

matrix (option 2) to evaluate a population design using a 

differential equation system to describe the model 

o EQPfimOPT4.0op2.r: To compute the full Fisher Information 

matrix (option 2) to optimise a population design using a 

differential equation system to describe the model 

o algosimplex4.0.r: To use the Simplex algorithm  

o initfedoR.c and classfed.h: To compile the dll 

o libFED.dll and libFED64.dll: The dynamic libraries of the 

Fedorov-Wynn algorithm for R 32-bit and 64-bit respectively 

o algofedorov4.0.r: To use the dynamic library libFED.dll or 

libFED64.dll 

o LibrayPK.r: To use the library of pharmacokinetic models 

o LibrayPD_PDdesign.r: To use the library of immediate 

response pharmacodynamic models alone 

o LibrayPD_PKPDdesign.r: To use the library of pharmacodynamic 

models linked to pharmacokinetic models both written using 

analytical form 

o CreateModel_PKPDdesign.r: To use the libraries of 

pharmacokinetic and pharmacodynamic models when they are 

writing either with different forms or both with 

differential equation systems. 

 

  The files in the folder Program should not be changed. 
 

The folder called Examples contains the examples files. The documentation 

which gives their description is included in PFIM 4.0 with this user guide. 

 

To install PFIM 4.0, create a directory (for example directory “U:\\My 

Documents\\PFIM 4.0”) and download PFIM 4.0.  
 

3.3 Working directory 

 

- Create a working directory, for example: 

 

“U:\\My Documents\\PFIM 4.0_examples\\Example1” 

 

- Copy the files PFIM.r, stdin.r and model.r in this directory 

 

- In the file “PFIM.r”, specify your working directory: 

 

directory<-“U:\\My Documents\\PFIM 4.0_examples\\Example1” 

 

- Then, specify your program directory i.e. where is the folder called 

Program 

 

directory.program<-“U:\\My Documents\\PFIM 4.0\\Program” 

 

- Save the file PFIM.r 
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3.4 Run 

 

Once the input file and the model file are filled in, the user can run 

PFIM. Load the main function PFIM() implemented in the file PFIM.r. To do 

that, choose the File item from the menu. Select “Source R code”; click on 

the right directories up to the file PFIM.r. The user can also load the 

file by typing the command in the Command Window:   

  

source("U:\\My Documents\\PFIM 4.0_examples\\Example1\\PFIM.r") 

   

Call the R function in the Commands window: PFIM()   
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4 Models 

 
Models in PFIM can be specified either through their analytical form or as 

a solution of system of differential equations. PFIM provides libraries of 

models (see Section 4.1), and users may also define their own model 

analytically or using a system of differential equations (see Section 4.2).  

 

The PFIM library implements R expressions or differential equation systems 

for PKPD models. The PK model library includes one, two and three 

compartment models with linear elimination and with Michaelis-Menten 

elimination. The PD model library supports immediate response models (alone 

or linked to a pharmacokinetic model) and the turnover response models 

(linked to pharmacokinetic model). These libraries have been derived from 

the PKPD library developed by Bertrand and Mentré for the MONOLIX software, 

and all analytical expressions are in that document [15]. A documentation 

of PKPD models for PFIM is available when downloading PFIM. Presently, 

there is no model with lag time in the library. To use the library of 

models, the user has to specify the path of the corresponding library file 

in the model file named by default model.r.  
 

New feature: In the previous versions of PFIM, a user-defined model given 

in analytical form needed to be specified through an R expression. An 

alternative way to write the model is now available, through an R function 

with a specific format (see section 4.2.3).  

 

4.1 Library of models 

4.1.1 Library of pharmacokinetic models 

Two types of PK models can be used in PFIM, PK models with a first order 

linear elimination or PK models with a Michaelis-Menten elimination. The PK 

models with a linear elimination are written using an analytical form 

through an R expression whereas the PK models with a Michaelis-Menten 

elimination are written using a differential equation system. These PK 

models are written in the file LibraryPK.r available in the Program folder. 

The user has to specify the path of this file in the model file to use this 

library of models:   

 

source(file.path(directory.program,”LibraryPK.r”)) 

 

The following sections show the list of models for each type of PK model in 

separate tables. These tables display all the information in order to use 

the model function chosen.  The model is described by: 

- a name 

- the type of input 

- the type of elimination 

- the number of compartments 

- the parameters used (parameterisation) 

- the type of administration (sd : single dose, md: multiple dose, 

ss: steady state) depending on administration type, additional 

variables may be required. They are specified in the arguments (N: 

number of doses, tau: interval between two doses, TInf: duration 

of the infusion, doseMM: dose) 

 

For models with infusion, the user must specify the duration of infusion 

(TInf) as an argument. The rate of infusion is computed automatically in 

the function model through the expression: dose/TInf. For PK models with 
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linear elimination, the variable dose has to be specified in the input 

file.  

 

When a model with multiple dose administration is used, for example the 

first order oral absorption with one compartment model with option md 

(oral1_1cpt_kaVCl_md) from the library, the function of the model uses 

three parameters (ka, Cl and V) and two needed variables (N, tau): the 

number of doses (N) and the interval between two doses (tau) (see Example 

1, section 4.2). 

 

 

Pharmacokinetic models with a linear elimination 

 

The library of PK models with linear elimination is composed of one, two 

and three compartment models for the three types of input (bolus, infusion 

and first order oral absorption) and the three types of administration 

(single dose, multiple dose, steady state).  

 

The list of these PK models is given in Table 1. 
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Table 1. Pharmacokinetic models with first order linear elimination included in the library of models 

 

Name Input Cpt Elimination Parameterisation Administration Arguments 

bolus_1cpt_Vk IV-bolus 1 1st order V, k 

sd - 

md N, tau 

ss tau 

bolus_1cpt_VCl IV-bolus 1 1st order V, Cl 

sd - 

md N, tau 

ss tau 

infusion_1cpt_Vk IV-infusion 1 1st order V, k 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

infusion_1cpt_VCl IV-infusion 1 1st order V, Cl 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_1cpt_kaVk 1st order 1 1st order ka, V, k 

sd - 

md N, tau 

ss tau 

oral1_1cpt_kaVCl 1st order 1 1st order ka, V, Cl 

sd - 

md N, tau 

ss tau 

bolus_2cpt_Vkk12k21 IV-bolus 2 1st order V, k, k12, k21 

sd - 

md N, tau 

ss tau 

bolus_2cpt_ClV1QV2 IV-bolus 2 1st order Cl, V1, Q, V2 

sd - 

md N, tau 

ss tau 

infusion_2cpt_Vkk12k21 IV-infusion 2 1st order V, k, k12, k21 

sd TInf 

md TInf, N, tau 

ss TInf, tau 
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infusion_2cpt_ClV1QV2 IV-infusion 2 1st order Cl, V1, Q, V2 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_2cpt_kaVkk12k21 1st order 2 1st order ka, V, k, k12, k21 

sd - 

md N, tau 

ss tau 

oral1_2cpt_kaClV1QV2 1st order 2 1st order ka, Cl, V1, Q, V2 

sd - 

md N, tau 

ss tau 

bolus_3cpt_Vkk12k21k13k31 IV-bolus 3 1st order V, k, k12, k21, k13, k31 

sd - 

md N, tau 

ss tau 

bolus_3cpt_ClV1Q1V2Q2V3 IV-bolus 3 1st order Cl, V1, Q1, V2, Q2, V3 

sd - 

md N, tau 

ss tau 

infusion_3cpt_Vkk12k21k13k31 IV-infusion 3 1st order V, k, k12, k21, k13, k31 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

infusion_3cpt_ClV1Q1V2Q2V3 IV-infusion 3 1st order Cl, V1, Q1, V2, Q2, V3 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_3cpt_kaVkk12k21k13k31 1st order 3 1st order ka, V, k, k12, k21, k13, k31 

sd - 

md N, tau 

ss tau 

oral1_3cpt_kaClV1Q1V2Q2V3 1st order 3 1st order ka, Cl, V1, Q1, V2, Q2, V3 

sd - 

md N, tau 

ss tau 
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Pharmacokinetic models with a Michaelis-Menten elimination 

 

One, two and three compartment models are implemented for the three types 

of input. For bolus input, only single dose models are implemented. For 

infusion and first order absorption input, single dose and multiple dose 

are implemented. There is no steady-state form for PK models with 

Michaelis-Menten elimination (in this case the user can use a multiple dose 

model with enough doses to reach SS). The list of these PK models is given 

in Table 2. 

For models with a bolus input, the dose has to be specified in the input 

file (stdin.r by default) as the initial condition of the differential 

equation system (see Example 7.1, section 4.2). For models with infusion or 

first order absorption input, dose has to be specified as an argument of 

the model function and NOT IN THE INITIAL CONDITION OF THE MODEL IN THE 

INPUT FILE (see Example 7.2, section 4.2). 

 As the dose is an argument, it is not possible to specify different 

doses per group for models with infusion or first order absorption input. 

All groups of the design considered have the same dose. Otherwise, the user 

should use the user defined model option. 
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Table 2. Pharmacokinetic models with Michaelis-Menten elimination included in the library of models 
 

Name Input Cpt Elimination Parameterisation Administration Arguments 

bolus_1cpt_VVmkm IV-bolus 1 Michaelis-Menten V, Vm, km sd - 

infusion_1cpt_VVmkm IV-infusion 1 Michaelis-Menten V, Vm, km 
sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_1cpt_kaVVmkm 1st order 1 Michaelis-Menten ka, V,Vm, km 
sd doseMM 

md doseMM,tau 

bolus_2cpt_Vk12k21Vmkm IV-bolus 2 Michaelis-Menten 
V, k12, k21, Vm, 

km 
sd - 

bolus_2cpt_V1QV2Vmkm IV-bolus 2 Michaelis-Menten 
V1, Q, V2, Vm, 

km 
sd - 

infusion_2cpt_Vk12k21Vmkm IV-infusion 2 Michaelis-Menten 
V, k12, k21, Vm, 

km 

sd doseMM,TInf 

md doseMM,TInf, tau 

infusion_2cpt_ V1QV2Vmkm IV-infusion 2 Michaelis-Menten 
V1, Q, V2, Vm, 

km 

sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_2cpt_kaVk12k21Vmkm 1st order 2 Michaelis-Menten 
ka, V, k12, k21, 

Vm, km 

sd doseMM 

md doseMM, tau 

oral1_2cpt_kaV1QV2Vmkm 1st order 2 Michaelis-Menten 
ka, V1, Q, V2, 

Vm, km 

sd doseMM 

md doseMM, tau 

bolus_3cpt_Vk12k21k31k13Vmkm IV-bolus 3 Michaelis-Menten 
V, k12, k21, 

k13, k31, Vm, km 
sd - 

bolus_3cpt_ V1Q1V2Q2V3Vmkm IV-bolus 3 Michaelis-Menten 
V1, Q1, V2, Q2, 

V3, Vm, km 
sd - 

infusion_3cpt_Vk12k21k13k31Vmkm IV-infusion 3 Michaelis-Menten 
V, k12, k21, 

k13, k31, Vm, km 

sd doseMM,TInf 

md doseMM,TInf, tau 

infusion_3cpt_V1Q1V2Q2V3Vmkm IV-infusion 3 Michaelis-Menten 
V1, Q1, V2, Q2, 

V3, Vm, km 

sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_3cpt_kak12k21k13k31Vmkm 1st order 3 Michaelis-Menten 
ka, k12, k21, 

k13, k31, Vm, km 

sd doseMM 

md doseMM,tau 

oral1_3cpt_kaV1Q1V2Q2V3Vmkm 1st order 3 Michaelis-Menten 
ka, V1, Q1, V2, 

Q2, V3, Vm, km 

sd doseMM 

md doseMM, tau 
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4.1.2 Library of pharmacodynamic models 

 

The library of PD models supports immediate response models (either as a 

function of observed concentrations, or linked to a pharmacokinetic model) 

and turnover response models (linked to pharmacokinetic models).  

The following tables present these models, giving the following elements 

for each drug model:  

- the name of the model function in the library 

- the parameters used (parameterisation) 

 

Examples for the use of the library of pharmacodynamic models are presented 

in section 4.2.  

 

 

Immediate response pharmacodynamic models alone 

 

Linear, quadratic, logarithmic, Emax, sigmoid Emax, Imax, sigmoid Imax 

models with null or constant baseline are available. The list of these 

models is given in Table 3.  

These models are written in closed form and can be used in the case of a 

model with one response (PD evaluation or optimisation). They are 

implemented in the file LibraryPD_PDdesign.r.  Thus, the user has to 

specify the path of this file in the model file to use this library of 

models:  

 

source(file.path(directory.program,”LibraryPD_PDdesign.r”)) 

 

For these models, the design variables are the concentrations or the doses 

instead of the sampling times.  

For example, if one uses a linear drug action model without baseline 

(immed_lin_null) from the library, the model uses one parameters (Alin) 

(see Example 2, section 4.2).  

 

 
Pharmacodynamic models linked to pharmacokinetic model 

 
In this section, we consider models with two responses, with one response 

for the PK and the other one for the PD. We thus optimise sampling times 

for both responses using a PK/PD model. Using the libraries of models, we 

have four cases to compose the PK/PD model depending on the form for each 

submodel: either with an analytical form (AF) or a differential equation 

system (ODE). 

 

Therefore, there are four cases of PK/PD models in PFIM library: 

 

1. PK model with linear elimination (AF) and immediate response PD 

model (AF) 

2. PK model with linear elimination (AF) and turnover response PD 

model (ODE) 

3. PK model with Michaelis-Menten elimination (ODE) and immediate 

response PD model (AF) 

4. PK model with Michaelis-Menten elimination and turnover response 

PD model (ODE)  
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Table 3. Immediate response pharmacodynamic models included in the PD library for PD alone and for PK/PD model 

 

Drug action 

models 

Baseline 

Null baseline Constant baseline 

Name Parameterisation Name Parameterisation 

Linear immed_lin_null Alin immed_lin_const Alin, S0 

Quadratic immed_quad_null Alin, Aquad immed_quad_const Alin, Aquad, S0 

Logarithmic immed_log_null Alog immed_log_const Alog, S0 

Emax immed_Emax_null Emax, C50 immed_Emax_const Emax, C50, S0 

Sigmoid Emax immed_gammaEmax_null Emax, C50, gamma immed_gammaEmax_const Emax, C50, gamma, S0 

Imax immed_Imax_null Imax, C50 immed_Imax_const Imax, C50, S0 

Sigmoid Imax immed_gammaImax_null Imax, C50, gamma immed_gammaImax_const Imax, C50, gamma, S0 
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To use PFIM for design evaluation and optimisation for a PK/PD model, the 

two models must be in the same format.  

If both models are written in closed form (case 1), the user can combine 

the immediate response pharmacodynamic models in closed form expression 

from the file LibraryPD_PKPDdesign.r with the pharmacokinetic models with 

first order linear elimination (Table 1) in closed form expression from the 

file libraryPK.r. In the PD functions, the expression of the PK model is 

given as an argument (see Example 3, section 4.2).  

In this case, the user must fill in the stdin.r using analytical form 

options and must specify the paths of the library files in model.r:  

 

source(file.path(directory.program,”LibraryPK.r”)) 

source(file.path(directory.program,”LibraryPK_PKPDdesign.r”)) 

 

For the three other cases, the user has to call a specific function in 

order to create a system of differential equations describing the 

corresponding PK/PD model. This function named Create_formED() is 

implemented in the file CreateModel_PKPDdesign.r and has to be used in the 

model file as follows:  

 

source(file.path(directory.program,”CreateModel_PKPDdesign.r”)) 

create_formED(fun_pk,fun_pd,dose=NA,tau=NA,TInf=NA)  

 

The arguments to this function are:  

- fun_pk and fun_pd: the names of the PK and PD models, respectively 

- dose: value of the dose only for a PK model with infusion or oral 

input (by default: NA)  

- tau: dosing interval to specify only for multiple dose conditions 

(by default: NA) 

- TInf: time of infusion to specify only for PK model with infusion 

input (by default: NA) 

 

The output of this function is a new file, named model_created.r, which is 

created in the directory currently used. This new file contains a function 

implementing the differential equation system for the corresponding PK/PD 

model. This file can be deleted after running PFIM. It will be 

created/overwritten each time the function Create_formED() is called. 

 

Because the resulting function is an ODE system, the user must fill in the 

section corresponding to differential equation options in the input file 

(see Section 5). 

 

The list of the immediate response PD models in the PFIM library is shown 

in Tables 3 and 4. The list of the turnover response PD models is given in 

Table 5.  

 

For the second case, where a PK model with linear elimination is associated 

to a turnover PD response model (defined using differential equation 

system), the PK model must be written with a differential equations system 

as well. Consequently, only some PK models from the Table 1 are implemented 

in CreateModel_PKPDdesign.r: 

- for bolus input, only single dose models 

- for infusion input, single dose and multiple dose  

- for first order absorption input, single dose and multiple dose 

For models with a bolus input, the dose has to be specified in the input 

file (stdin.r by default) as the initial condition of the differential 

equation system (see Example 10, section 4.2). For models with infusion or 

first order absorption input, dose has to be specified as an argument of 

the function Create_formED() and NOT IN THE INITIAL CONDITION OF THE MODEL 
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IN THE INPUT FILE (see Example 11, section 4.2). Consequently, it is not 

possible to specify different doses per group when using models with 

infusion or first order absorption input from the library. All groups of 

the design are assumed to have the same dose. Otherwise, the user should 

use the user defined model option. 
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Table 4. Immediate response pharmacodynamic models linked to a pharmacokinetic model included in the library* 

 

Drug action 

models 

 

Baseline/disease models 

Linear progression Exponential increase Exponential decrease 

Name Param. Name Param. Name Param. 

Linear immed_lin_lin 
Alin, S0, 

kprog 
immed_lin_exp 

Alin, S0, 

kprog 
immed_lin_dexp 

Alin, S0, 

kprog 

Quadratic immed_quad_lin 
Alin, Aquad, 

S0, kprog 
immed_quad_exp 

Alin, 

Aquad, S0, 

kprog 

immed_quad_dexp 
Alin, Aquad, 

S0, kprog 

Logarithmic immed_log_lin 
Alog, S0, 

kprog 
immed_log_exp 

Alog, S0, 

kprog 
immed_log_dexp 

Alog, S0, 

kprog 

Emax immed_Emax_lin 
Emax, C50, 

S0, kprog 
immed_Emax_exp 

Emax, C50, 

S0, kprog 
immed_Emax_dexp 

Emax, C50, 

S0, kprog 

Sigmoid 

Emax 
immed_gammaEmax_lin 

Emax, C50, 

gamma, S0, 

kprog 

immed_gammaEmax_exp 

Emax, C50, 

gamma, S0, 

kprog 

immed_gammaEmax_dexp 

Emax, C50, 

gamma, S0, 

kprog 

Imax immed_Imax_lin 
Imax, C50, 

S0, kprog 
immed_Imax_exp 

Imax, C50, 

S0, kprog 
immed_Imax_dexp 

Imax, C50, 

S0, kprog 

Sigmoid 

Imax 
immed_gammaImax_lin 

Imax, C50, 

gamma, S0, 

kprog 

immed_gammaImax_exp 

Imax, C50, 

gamma, S0, 

kprog 

immed_gammaImax_dexp 

Imax, C50, 

gamma, S0, 

kprog 

 

* In addition to those in Table 3.  
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Table 5. Turnover response pharmacodynamic models linked to a pharmacokinetic model included in the library 

 

Types  

of 

response 

Models with impact on the 

Input Output 

 Name Parameterisation Name Parameterisation 

Emax turn_input_Emax Rin,kout,Emax,C50 turn_output_Emax Rin,kout,Emax,C50 

Sigmoid 

Emax 
turn_input_gammaEmax Rin,kout,Emax,C50,gamma turn_output_gammaEmax Rin,kout,Emax,C50,gamma 

Imax turn_input_Imax Rin,kout,Imax,C50 turn_output_Imax Rin,kout,Imax,C50 

Sigmoid 

Imax 
turn_input_gammaImax Rin,kout,Imax,C50,gamma turn_output_gammaImax Rin,kout,Imax,C50,gamma 

Full 

Imaxa  
turn_input_Imaxfull Rin,kout,C50 turn_output_Imaxfull Rin,kout,C50 

Sigmoid 

full 

Imaxa 

turn_input_gammaImaxfull Rin,kout,C50,gamma turn_output_gammaImaxfull Rin,kout,C50,gamma 

  
a 
Full Imax means Imax is fixed equal to 1 
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4.2 Model writing 

 
The structural model should be written in a text file (called “model.r” by 

default but any name can be used). It can be specified either through an 

analytical form (as an R expression or an R function) or as a solution of 

systems of differential equations.  

 

An analytical expression model or differential equation model can be called 

from PFIM libraries (see section 4.1) or implemented by the users. R 

functions of models can only be defined by the users and are not available 

in the pre-implemented model libraries.   

 

4.2.1 Models defined in analytical form through an R expression  

 

Description 

 

In case of analytical form, the model for each response should be written 

assigned in an object called ‘formi’ where i is the letter of the alphabet 

A,B,C,…. The “formi” for all the responses are then grouped in a vector 

called “form”: 
 

form<-c(formA,formB,formC,…) 

 

If the model for a response is defined over intervals by different 

expressions, each response should be written as a vector of expressions. 

Each expression can be defined in an object ‘formI’, where I = 1, 2, 3,…. 

For example, if the user wants to give three expressions for the first 

response, he can write as follows: 

 

formA<-c(form1,form2,form3) 

 

formA can be a model of the PFIM libraries or an user-defined model. In the 

latter case, the specification of the dose can be anywhere in the 

analytical expression. The name dose should be used unchanged. In the 

computation of the Fisher information matrix, the dose given in each 

elementary design will be used. If the user gives a value to the dose 

directly in the model, then all elementary designs will have the same dose.  

 

Example 1: PK model after multiple dose administration using an analytical 

form with the library of models 

 

source(file.path(directory.program,"LibraryPK.r")) 

form1<-oral1_1cpt_kaVCl_md(N=1,tau=12) [[1]] 

form2<-oral1_1cpt_kaVCl_md(N=2,tau=12) [[1]] 

form3<-oral1_1cpt_kaVCl_md(N=3,tau=12) [[1]] 

form4<-oral1_1cpt_kaVCl_md(N=4,tau=12) [[1]] 

form5<-oral1_1cpt_kaVCl_md(N=5,tau=12) [[1]] 

formA<-c(form1,form2,form3,form4,form5) 

form<-c(formA) 

 

Note: In this illustration, the user creates a one response model using the model 

function implemented in the pharmacokinetic library (Oral1_1cpt_kaVCl) describing a 

one compartment oral absorption after a multiple dose administration (md). N and 

tau are the arguments to be specified by the user in the function model. Here, 

there are five oral administration doses with an interval between two doses equal 

to twelve hours. The vector of time intervals of each expression needs to be 

defined in the input file:  

 

boundA<-list(c(0,12),c(0,12)+12,c(0,12)+2*12,c(0,12)+3*12,c(0,12)+4*12) 
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Example 2: PD model using an analytical form with the library of models 

 

source(file.path(directory.program,dirsep,"LibraryPD_PDdesign.r”)) 

formA<-immed_lin_null()[[1]] 

form<-c(formA) 

 

Note: In this illustration, the user creates a one response model using the model 

function implemented in the library (immed_lin_null) describing an immediate 

response model with a linear drug action and without baseline. 

 

 

Example 3: PK model with a linear elimination and immediate response PD 

model 

 

source(file.path(directory.program,dirsep,"LibraryPK.r")) 

source(file.path(directory.program,dirsep,"LibraryPD_PKPDdesign.r”)) 

formA<-bolus_1cpt_Vk()[[1]] 

formB<-immed_lin_null(formA)[[1]] 

form<-c(formA, formB) 

 

Note: In this illustration the user creates for the PK model, a one compartment 

model with bolus input and first order elimination for a single dose, and for the 

PD model, an immediate response model with a linear drug action and no baseline is 

used. As shown in the example, the PK model is given as an argument of the PD model. 
Thus, in the PD model the drug concentration corresponds to the expression of the 

PK model. 
 

 

 

Example 4: PK model using an analytical form with user-defined expression  

 

formA<-expression((dose/v*ka)/(ka-ke)*(exp(-ke * t) - exp(-ka*t))) 

form<-c(formA) 

 

Note: In this illustration, the user creates a one response model describing a one 

compartment oral absorption with expression. The dose here needs to be specified in 

the input file. 

 

If the dose is defined directely in the model expression as below, all elementary 

designs will have the same dose (100 dose unit). 

 

formA<-expression((100/v*ka)/(ka-ke)*(exp(-ke * t) - exp(-ka*t))) 

form<-c(formA) 
 

 

4.2.2 Models defined in analytical form through an R function 

 
Description 

 

The R function for a PFIM model should take the following form: 

 

formA<-function(t,p,X) { 

. . . 

} 
 

The function has 3 arguments 

- a vector of times t  

- a vector of parameters p  

- a scalar X which represents the dose  

 

Within the function, the user can define local variables and use the 

parameters provided in vector p. However, the header to the function and 
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its name must remain unchanged. The order of the parameters is provided by 

the user through the parameter vectors in the stdin file. The function 

returns a vector of predictions of each time point in t, computed using the 

dose X and the parameters p. 

 
Example 5: PK model after single dose administration using an analytical 

form with user-defined R function 

 

formA<-function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

form<-formA 
 

Note: In this illustration, the user creates a function of a one response model 

describing a one compartment oral absorption. 
 

 

Example 6: PK model after multiple dose administration using an analytical 

form with user-defined R function 

 

form<-function(t,p,X){ 

ka<-p[1] 

V<-p[2] 

Cl<-p[3] 

 

N<-5 

tau<-12 

 

y<-0 

for (n in 1:N) 

  { 

  indic<-t>=(n-1)*tau 

  yn<-indic*(X/V*ka/(ka-Cl/V)*(exp(-Cl/V*(t - (n - 1) * tau))-exp(-ka*(t - 

(n - 1) * tau))))  

  y<-y+yn 

  } 

return(y) 

} 

 

Note: In this illustration, the user creates a function of one response model 

describing a one compartment oral absorption after five administration doses with a 

between dose interval equal to twelve hours. The number of doses and the between 

dose interval are defined within the function. They can also be defined as fixed 

parameters included in the vector p (see Section 5 for more details on fixed 

parameters). 

 

4.2.3 Models defined through a differential equation system  

 
Description 

 
Model defined as a solution of a differential equation system must be 

called “formED” and can be called from the PFIM libraries or defined by the 

users. In the latter case, the user need to write an R function in a format 

suitable for the solver package deSolve and using the following form: 
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formED<-function(t,y,p) 
{ 

   ... 

  
   ... 
 

   ... 

} 

 

 

 

Again the user may modify anything within this function but the name and 

header must remain unchanged. 

 

The function formED has 3 arguments: 

- a vector of time t 

- the current estimate of the variables in the ode system y 

- a vector of parameters p 

 

Within the function, the user has to define the name of the parameters in 

vector p and the differential equation system. 

 

The function returns a list with 2 elements: 

- the first element is a vector giving the values of the derivatives 

for each equation in the differential equation system, computed 

for each time point in t using the parameters p 

- the second element is a vector of predictions computed for each 

time point in t using the parameters p; in PFIM, this vector 

contains the response(s) we are observing 

 

The initial values of the system have to be specified in the input file 

stdin.r presented in the section 5, uder the name condinit.  

 

The implementation of differential equations system requires the use of the 

lsoda function included in the library “deSolve” (R. Thomas Petzoldt) and 

of the fdHess function included in the library “nlme” developed by Jose 

Pinheiro and Douglas Bates. 

The lsoda function uses a function of the same name written in Fortran by 

Linda R. Petzold and Alan C. Hindmarsh. This function solves system of 

differential equations using the Adams method, a predictor – corrector 

method for non-stiff systems; it uses the Backward Differentiation Formula 

(BDF) for stiff systems. The fdHess is used for numerical derivation. It 

evaluates an approximate gradient of a scalar function using finite 

differences.  

 
Example 7.1: PK model with bolus input using a differential equation form 

from the library of models  

 

source(file.path(directory.program,dirsep,"LibraryPK.r")) 

formED<-bolus_1cpt_VVmkm() 
 

Note: In this illustration, the user creates a one response model using the model 

function implemented in the pharmacokinetic library (bolus_1cpt_VVmkm) describing a 

one compartment bolus input with Michaelis-Menten elimination after a single dose 

administration (sd). The dose is specified in a part of the R-script file stdin.r 

(see section 5 for more input details): 

 

time.condinit<-0 

condinit<-expression(c(100)) # dose=100 
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Example 7.2: PK model with infusion input using a differential equation 

form from the library of models  

 

time.condinit<-0 

condinit<-expression(c(0))  

source(file.path(directory.program,dirsep,"LibraryPK.r")) 

formED<-infusion_1cpt_VVmkm(doseMM=100, Tinf=1) 

 

Note: In this illustration, the user creates a one response model using the model 

function implemented in the pharmacokinetic library (infusion_1cpt_VVmkm) 

describing a one compartment infusion input with Michaelis-Menten elimination after 

a single dose administration (sd). The dose is specified as an argument of the PK 

function in the file model.r, not in the initial condition described in a part of 

the R-script file stdin.r. 

 

 

Example 8: PK model using a differential equation system created by the 

user 

 

formED<-function(t,y,p) 

{ 

   ka<-p[1] 

   km<-p[2] 

   Vm<-p[3] 

   V<-p[4] 

  

   yd1<--ka*y[1] 

   yd2<-+ka*y[1]- V * (Vm * y[2]/(V * km + y[2])) 

 

   list(c(yd1,yd2),c(y[[2]]/V)) 

  } 
 

Note: This function formED implements a one compartment model with first order 

absorption and Michaelis-Menten elimination. The dose is specified as an argument 

of the PK function in the file model.r, not in the initial condition described in a 

part of the R-script file stdin.r. 

 

The first four lines in the body of the function assign model parameters from the 

vector p.  The next two lines describe the derivatives of the system (yd1 and yd2). 

More specifically, each derivative represent the drug concentration in the specific 

compartment at the instant t, and its elements can be either positive or 

negative.The notation ydX denotes the derivative of the variable in compartment X 

while the notation y[X] denotes the quantity in the same compartment (see 

documentation for the deSolve package for details).The last line defines the 

elements returned by the function: 

- the first item is mandatory for the deSolve package, and should always 

consist of a vector with the derivatives of the system (here, the two 

elements yd1 and yd2) 

- the second item defines the response, here the concentration in the second 

(central) compartment which is defined by the quantity in this compartment 

(y[2]) divided by the volume of distribution V. Several responses can be 

given. 
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Example 9: PK model after multiple dose administration using a differential 

equation system created by the user 

 

formED<-function(t,y,p) 

{ 

ka<-p[1] 

V<-p[2] 

Cl <-p[3] 

 

tau<-12 

input_oral1<-function(ka,V,dose,n,tau,t){ 

if(n==0){return(dose*ka/V*exp(-ka*t))} 

else{return(dose*ka/V*exp(-ka*(t-

n*tau))+input_oral1(ka,V,dose,n-1,tau,t))} 

} 

n<-t%/%tau 

input<-input_oral1(ka,V,dose,n,tau,t)  

  

dy<--Cl/V*y[1]+input 

 

list(c(dy),c(y[1])) 

} 

 

Note: In this illustration, the user creates a function of one response model 

describing a one compartment oral absorption after multiple dose administration 

with a between dose interval between two doses equal to twelve hours. The number of 

doses and the between dose interval are defined within the function. 
 

 

Example 10: PK model with bolus input, linear elimination and turnover 

response PD model 

 

source(file.path(directory.program,dirsep,"CreateModel_PKPDdesign.r")) 

create_formED(bolus_1cpt_Vk,turn_input_Imax) 
 

Note: In this example, the user creates a PK/PD model with a one compartment bolus 

input for the PK and a turnover response model with an inhibition on the input for 

the PD, using the function create_formED. The dose is specified as initial 

condition of the differential equation system in the R-script file stdin.r. 

 

 

 

Example 11: PK model with infusion input, Michaelis-Menten elimination and 

immediate response PD model 

 

source(file.path(directory.program,dirsep,"CreateModel_PKPDdesign.r")) 

create_formED(infusion_1cpt_VVmkm,immed_lin_null,doseMM=100,TInf=1) 
 

Note: In this illustration, the user creates a one response model using the model 

function implemented in the pharmacokinetic library (infusion_1cpt_VVmkm) 

describing a one compartment infusion input with Michaelis-Menten elimination after 

a single dose administration (sd). The dose is specified as an argument of the PK 

function in the file model.r, not in the initial condition in the R-script file 

stdin.r. 
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5 Input 
 

 
This section shows the common objects required for both design evaluation 

and optimisation. One input file has to be filled called by default: 

stdin.r. 

 

In the file stdin.r, the following R objects must be created:  

 

- project: character string indicating the name of the project 

 

- file.model: character string indicating where to find the structural 

model 

 

- output: character string indicating in which file the results 

should be printed 

 

- outputFIM: character string indicating in which file the Fisher 

information matrix should be saved 

 

 

To specify evaluation or optimisation designs, the user has to complete the 

“run” object: 

 

- run: character string for function selection: 

-“EVAL” for evaluation  

-“OPT” for optimisation  

 

 

According to the choice, specific objects notified below must be specified.  

 

5.1 Option for Fisher information expression 

 

You have to choose the option for the Fisher information matrix, that is 

population, individual or bayesian and complete the “FIM” object: 

 

- FIM:      type of the Fisher information matrix: 

          P for population 

          I for individual 

          B for Bayesian 

 

In the case of population design (i.e., population Fisher matrix), you can 

complete the “previous.FIM” object if previous information is available. If 

it is not the case, leave it as the default.  

 

- previous.FIM: character string indicating the name of the file 

containing the previous information   

 

To compute Fisher information matrix, you have to complete the “option” 

object: 

 

- option:   type of option: 

          1 for block diagonal Fisher information matrix 

          2 for complete Fisher information matrix 

 

Then, you have to complete the “nr” object: 

 

- nr: value indicating the number of responses in the model 

 

According to the choice, specific objects notified below must be specified.  
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5.2 Structural model option 

 

- modelform: character string indicating either a model given under 

differential equation systems (“DE”) or analytical form 

(“AF”) 

 

 

 

  For analytical model specification only 

 

- dose.identical:    logical value: ‘T’ if the dose is the same for all  

elementary designs, ‘F’ if not. 

 

- dose: value of the dose if dose.identical==T; if not, 

vector  

                     of the q doses for each elementary design. 

 If one uses infusion models implemented in the 

library of models, the dose has to be specified here. 

The rate of infusion is computed in the function 

model by the expression: dose/TInf. 

 

- boundi: vector of bounds specific to each response i with 

i=A,B,C,…. If the model is defined over intervals by 

different expressions, give in that vector, the 

values of each time interval for the response i. The 

first expression will be use for the first time 

interval, the second expression for the second time 

interval … 

- NUM:               logical value: ‘T’if using numerical derivatives,then  

the model must be written by the user using R 

function in model.r file, ‘F’ if not, then the model 

is specified via the object "form" which is a vector 

of expressions                                                                                  

 

 

 

 

For differential equations system specification only 

 

- time.condinit:   initial time at which initial conditions are given. 

  

 

- condinit.identical:  logical value: ‘T’ if the initial conditions are   

the same whatever the elementary design, ‘F’if not.  

 

- condinit: initial values of the system at the initial time, 

given into an expression. If condinit.identical==T, 

enter once the expression of the initial values of 

the system at the initial time; else, enter the 

vectors of the initial conditions for each 

elementary design. If initial values depend on 

parameters to be estimated, enter this parameter 

into the expression without any quotation marks  

 

- RtolEQ: relative error tolerance, either a scalar or an 

array as long as ‘y’. See details in help for lsoda 

function. Default value is 1e-06. 

 

- AtolEQ:  absolute error tolerance, either a scalar or an 

array as long as 'y'. See details in help for lsoda 

function. Default value is 1e-.06 
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- Hmax: an optional value for the maximum integration 

stepsize. Default value is Inf. 

 

 

 

From help for lsoda: “The input parameters 'RtolEQ', and 'AtolEQ' determine 

the error control performed by the solver.  The solver will control the 

vector *e* of estimated local errors in *y*, according to an inequality of 

the form max-norm of ( *e*/*ewt* ) <= 1, where *ewt* is a vector of 

positive error  

weights.  The values of 'RtolEQ' and 'AtolEQ' should all be non-negative. 

The form of *ewt* is: 

 

*RtolEQ* * abs(*y*) + *AtolEQ* 

 

where multiplication of two vectors is element-by-element. 

 

If the request for precision exceeds the capabilities of the machine, the 

Fortran subroutine lsoda will return an error code; under some 

circumstances, the R function 'lsoda' will attempt a reasonable reduction 

of precision in order to get an answer. It will write a warning if it does 

so.” 

 

 

5.3 Statistical model option 

 

- parameters: vector of p character strings for the names of the fixed 

effects parameters 

 

- beta:  vector of the p fixed effects parameters values 

 

- beta.fixed: p-vector indicating if the parameter is estimated or not 

 

- omega: vector of the p variances of the random effects should be 

given 

- n_occ: integer indicating the number of occasions. Example: 

n_occ=2 

- gamma: vector of the p variances of the random effects for 

inter-occasion variability. 

 

 

- sig.interi and sig.slopei: values of the parameters for the residual 

variance error model given by var(εi)=(
ierint

 + 
islope

 *fi)
2
 

for each response i, with i = A,B,C,…. 

 

 

- Trand: type of between-subject variance (or random effects) 

model: 

- 1 for additive between-subject variance model 

- 2 for exponential model 

 

 

If the user wants to deal with covariates which do not change with 

occasion, he has to specify the following object.  
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- covariate.model: logical value; if T, covariates are added to the 

model 

 

If the user has filled in by T the previous object, he has to specify the 

following objects:  

 

 

- covariate.name: list of character indicating the name of the 

covariate(s) Example:  

  covariate.name<-list(c(“Gender”)) 

 

- covariate.category: list of vectors of categories. Each vector is 

associated to one covariate and defines its 

corresponding categories. They can be written as 

character or integer. Example:   

covariate.category<-list(Gender=c(“F”,”M”)) 

 

- covariate.proportions:  list of vectors of proportions. Each vector is 

associated to one covariate and defines the 

corresponding proportions of subjects involved 

in each corresponding categories. Example: 

covariate.proportions<-list(Gender=c(0.5,0.5)) 

  

 

- parameter.associated:  list of vectors of parameter(s) associated with 

each covariate. Each vector is associated to one 

covariate and is defined by the corresponding 

parameters on which is added the covariate. 

Example: 

   parameter.associated<-list(Gender=c(Cl, V)) 

 

 Name of the parameter(s) has to be identical 

to those entered in the object parameters.  

      
- beta.covariate:  list of the values of parameters for all other 

categories than the reference category (for 

which beta=0. Example: 

 beta.covariate<-list(Gender=list(c(0.5,0.6))) 

 

 

 

If the user wants to deal with covariates which change with occasion, he 

has to specify the following object.  

 

- covariate_occ.model: logical value; if T, covariates changing with 

occasion are added to the model 

 

If the user has filled in by T the previous object, he has to specify the 

following objects:  

 

- covariate_occ.name: list of character indicating the name of the 

covariate(s) Example:  

  covariate_occ.name<-list(c(“Treat”)) 

 

- covariate_occ.category: list of vectors of categories. Each vector is 

associated to one covariate and defines its 

corresponding categories. They can be written as 

character or integer. Example:   

covariate_occ.category<-list(Treat=c(“A”,”B”)) 
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- covariate_occ.sequence:  list of vectors of sequences. Each vector is 

associated to one sequence of values of 

covariates at each occasion. The size of each 

sequence has to be equal to the number of 

occasions (n_occ) for each covariate. Example: 

 covariate_occ.sequence<-  

list(Treat=list(c(“A”,”B”),c(“B”,”A”)) 

 

 

- covariate_occ.proportions:  list of vectors of proportions. Each vector is 

associated to one covariate and defines the 

proportions of elementary designs corresponding 

to each sequence of covariate values. The size 

of each vector has to be equal to the number of 

sequences. Example: 

 covariate_occ.proportions<-

list(Treat=list(0.5,0.5)) 

 

 

- parameter_occ.associated: list of vectors of parameter(s) associated with 

each covariate. Each vector is associated to one 

covariate and is defined by the corresponding 

parameters on which is added the covariate. 

Example: 

   parameter_occ.associated<-list(Treat=c(Cl)) 

 Name of the parameter(s) has to be identical 

to those entered in the object parameters.  

 

 

- beta.covariate_occ: list of the values of parameters for all other 

categories than the reference category for which 

beta=0. Example: 

   beta.covariate_occ<-

list(Treat=list(c(log(1.1))) 

 

 

5.4 Design 

 

proti: list of vectors of elementary designs for each response i 

with i = A,B,C,…. Each vector contains the sampling times 

of the corresponding elementary design for the respective 

response. The size of the vector for each response has to 

be the same. 

 For example, if there are two responses, the user must 

specify:  

                            protA<-… 

                            protB<-… 

 

 If there are several responses with several elementary 

designs, the user can specify by NULL if a group do not 

have samples for one response. Example:  

                            protA<-list(c(1,3,6,12),c(18,20,24)) 

                            protB<- list(c(1,3,6,12),c(NULL)) 

                    In the present version, the Fedorov-Wynn does not 
work when there is a NULL design for one response.  
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- subjects: vector of the q numbers of subjects for each elementary design.  

 

In the case of optimisation, this object is a vector of the q initial 

proportions (if subjects.input=2) or of the numbers of subjects in each 

elementary design (if subjects.input=1). 

 

- subjects.input: 1 if the subjects per elementary designs are given as 

numbers, 2 if they are given as proportions 

 

- Ntot:  total number of samples. Ntot is required if the subjects 

per elementary design are given as proportions, i.e., only 

if subjects.input=2 

 

 

5.5 Objects required only for computation of power and number of 

subjects needed  

 

 

To compute the expected power to detect covariate effects as to 

compute the number of subjects needed to achieve a given power, the 

previous object covariate.model has to be filling in by T.  

 

Additional R objects are required to be created.  

 

The following object is needed for both options 

 

- alpha: the value of the type one error for the Wald 

test. Example: alpha<-0.05 

 

 

It is possible to compute either the expected power only or the number of 

subjects needed for a given power or both of them together.  

 

- compute.power logical value, if T the expected power for 

comparison test is computed for each covariate. 

Example: 

 compute.power<-T 

 

 

- compute.nni  logical value, if T the number of subjects 

needed for a given power for comparison test is 

computed for each covariate. Example: 

 compute.nni<-T 

 

 

- interval_eq vector of equivalence interval. Example:  

interval_eq<-c(log(0.8),log(1.25)) 

 

 

- compute.power_eq logical value, if T the expected power for 

equivalence test is computed for each covariate. 

Example: 

 compute.power_eq<-T 

 

 

- compute.nni_eq logical value, if T the number of subjects 

needed for a given power for equivalence test is 

computed for each covariate. Example: 

 compute.nni_eq<-T 
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- given.power the value of the given power for comparison 

and/or equivalence test. Example: 

 given.power<-0.9 

 

 

 

 

5.6 Graph option 

 

This list of objects allows to draw a graph with the evaluated design 

(evaluation step) or the optimised design (optimisation step). 

Options for plots of sensitivity functions have been added in version 4.0.  

If the user wants a graph, he has to specify it in the following object. 

- graph.logical: logical value; if T, draws the graph of the predicted 

output(s) and the sampling times. 

- graphsensi.logical: logical value; if T, draws the graph of the 

sensitivity function (first order derivation of the model) 

with respect to each parameter 

The user can choose to display only the graphs of models and/or sensitivity 

functions without computing the Fisher information matrix 

- graph.only: logical value; if T, draws the graph of the predicted 

output(s) and/or the sensitivity functions (no design 

evaluation or optimisation) 

 

If the user has filled in by T the previous object, he has to specify the 

following objects. 

 

- names.datax:  character vector for the names of X axis for each graph 

that corresponds to each type of measurement (the length 

of this vector must be equal to the number of responses).

  

- names.datay:  character vector for the names of Y axis for each graph 

that corresponds to each type of measurement (the length 

of this vector must be equal to the number of responses).

  

- log.logical: character string for controls logarithmic axes for the 

graphical representation of the models. Values “xy”, “x” 

or “y” produce log-log or log-x or log-y axes. Standard 

graphic is given by log.logical<-F 

- graph.infi and graph.supi: vector of lower and upper sampling times for 

the graphs for each response i with i=A,B,C, …. For example 

for a single response model, representation in the interval 

[0-60] is specified by graph.infA<-c(0) and graph.supA<-

c(60). If any lower and upper sampling times for the graph 

are specified, by default for each response the lower 

sampling time is 0 and the upper sampling time is the 

maximum sampling time of the initial design. 

- y.range: vector of lower and upper values for the graphical 

representations. They are identical of each response. By 

default, the value is NULL. For example, representation in 

1 interval [0-10] is specified by y.range=c(0,10). 

 

5.7 Objects required only for optimisation 

 

The user can optimise design with identical time in each elementary design 

for each response. To trigger this option, the user needs to specify it in 

the next objects: 
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- identical.times: T if identical sampling times for each response within 

an elementary design else F    

 

The choice of the algorithm is specify in the following object.  

 

- algo.option:   character string for algorithm selection. “SIMP” for 

Simplex algorithm selection; “FW” for Fedorov-Wynn 

algorithm selection 

 

For each algorithm, the user need to specify particular objects described 

below. 

 

 

For Simplex algorithm specification only 

 

- subjects.opt: logical value: ‘T’ is the optimisation of the proportions 

or the number of subjects is required; ‘F’ if not. 

 

- loweri and upperi: vector of lower and upper admissible sampling times 

for each response i with i = A,B,C, ….  For example if 

there is a single response model, representation in 2 

intervals [0-12], and [48-60] is specified by upperA<-

c(0,48) and lowerA<-c(12,60) 

 

- delta.time:  numeric value for the minimum delay between two successive 

sampling times 

 

- iter.print:  logical value to print the iterations (T) or not (F) 

 

- simplex.parameter:  percent of change from initial design for the 

initial vertices of the simplex algorithm building 

(default 20%). 

 

- Max.iter:  a positive integer specifying the maximum number of 

iterations allowed (default = 5000) 

 

- Rctol:  a positive numeric value specifying the tolerance level 

for the relative convergence criterion of the Simplex 

algorithm (default = 1e-6) 

 

 

For Fedorov-Wynn algorithm only 

 

- nwindi: numeric value for the number of sampling intervals for 

each response i with i=A,B,C, …   

  

- sampwini: list of vector of the allowed sampling times for each 

sampling interval for each response i with i = A,B,C, …  

 

- nsampi: list of vector of allowed numbers of points to be taken 

from each sampling interval for each response i with i = 

A,B,C, …   

- fixed.timesi: list of times which will be in all evaluated protocols, 

corresponding to fixed constraints for each response 

i=A,B,C,… 

- nmaxptsi: numeric value for the maximum number of sampling times per 

subject for each response i with i = A,B,C, …  

 

- nminptsi: numeric value for the minimum number of sampling times per 

subject for each response i with i = A,B,C, …  



 
44 

 

  For Fedorov-Wynn algorithm use, the initial population design specified 
in prot must involve elementary designs with number of samples per subject 

and sampling times in accordance with sampwin, nsamp, nmaxpts and nminpts 

for each response.  
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6 Output 
 

The results are written in the output file called stdout.r by default or 

with the name specified in the input file. This file is different when only 

evaluation is performed or when optimisation is performed. It is detailed 

in next sections respectively for evaluation and for optimisation.  

 

6.1 Evaluation output file and objects 

Figure 1 represents the output file from the design evaluation built on the 

Example documentation in the sections 1.2.4 and 1.6.1.  

 

The user can read on the Figure 1: 

 

      The name of the function used: PFIM 4.0. 

 

The name of the project and the date. 

 

A summary of the input: response(s), the evaluated population or 

individual/Bayesian design for each response, doses or initial conditions 

(in case of models defined by differential equation system) and number of 

subjects corresponding to those designs, between-subject variance model and 

residual error model for each response(s), error tolerances for the solver 

of differential equations system if used, name of the previous Fisher 

information matrix if considered.  

The figure 1 shows a one response model(written in user-defined model 

form) with a group described by three sampling times for 200 subjects, 

considering a previous Fisher information matrix. The parameter ka is fixed 

(assuming no variability on ka) and the dose is equal to 100. 

 

The population or individual or Bayesian Fisher information matrix, a 

dim*dim symmetric matrix where dim is the total number of population 

parameters to be estimated, the number of individual parametres + the 

number of error model parameters or only the number of individual 

parameters respectively. The name of the file where is possibly saved the 

Fisher information matrix is given. 

 

 

The value of each parameter with the expected standard error 

(StdError) and relative standard error (RSE). In case of Bayesian design, 

the associated shrinkages values are also reported. 

 

The value of the determinant of the Fisher information matrix and the 

value of the criterion (determinant
(1/dim)

) where dim is defined in  

 

    The eigenvalues of the Fisher information matrix and the correlation 

matrix. 

 

 

4

2

3

5

 
6 

1

  
7  

4
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PFIM 4.0  

 

Project:  Doc_example 

 

Date:  Fri Mar 21 13:02:23 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3]      

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

       times subjects doses 

1 c(1, 3, 8)      200   100 

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

Previous FIM from file Previous_FIM.txt 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

             V1        V2        V3        V4        V5         V6 

[1,] 17523.1601 113.42921    0.0000    0.0000    0.0000     0.0000 

[2,]   113.4292  11.91056    0.0000    0.0000    0.0000     0.0000 

[3,]     0.0000   0.00000 1499.7312  228.5511  420.7733   594.9001 

[4,]     0.0000   0.00000  228.5511 8988.9175  701.5138  2780.3955 

[5,]     0.0000   0.00000  420.7733  701.5138 2114.1728  4049.3932 

[6,]     0.0000   0.00000  594.9001 2780.3955 4049.3932 12315.5527 

 

  

  

2

3

4

1



 
47 

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta    StdError      RSE   

k  0.25 0.007798489 3.119395 % 

V 15.00 0.299123566 1.994157 % 

 

  

------------------------- Variance of Inter-Subject Random Effects -------- 

 

  omega²   StdError      RSE   

k   0.25 0.02669459 10.67783 % 

V   0.10 0.01098554 10.98554 % 

 

  

------------------------ Standard deviation of residual error -------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.03670921  7.341841 % 

sig.slopeA  0.15 0.01527153 10.181022 % 

 

  

******************************* DETERMINANT ******************************** 

  

2.199791e+19 

  

******************************** CRITERION ********************************* 

  

1673.903 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX *********** 

  

        FixedEffects VarianceComponents 

min     15109.231479           11.17585 

max     17523.894830         1509.84067 

max/min     1.159814          135.09852 

 

  

******************* CORRELATION MATRIX ****************** 

  

         [,1]       [,2]        [,3]        [,4]        [,5]        [,6] 

V1  1.0000000 -0.2482863  0.00000000  0.00000000  0.00000000  0.00000000 

V2 -0.2482863  1.0000000  0.00000000  0.00000000  0.00000000  0.00000000 

V3  0.0000000  0.0000000  1.00000000 -0.04548621 -0.21289290  0.09121384 

V4  0.0000000  0.0000000 -0.04548621  1.00000000  0.09083326 -0.23035289 

V5  0.0000000  0.0000000 -0.21289290  0.09083326  1.00000000 -0.78714187 

V6  0.0000000  0.0000000  0.09121384 -0.23035289 -0.78714187  1.00000000 

 

Figure 1. Example of design evaluation output file 

  

  

5

 
6 

  
7  
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6.2 Optimisation output file and objects 

Figure 2 represents the output file corresponding to the optimal Bayesian 

design described in the Example documentation in the section 1.3.2.  

 

The user can read on the Figure 2: 

 

The name of the function used: PFIM 4.0  

 

The name of the project and the date. 

 

A summary of the input: structural model, between-subject and error 

variance model, initial design, initial numbers or proportions of subjects 

and doses, total number of allowed samples, criterion associated to the 

initial design. 

 

Sampling times specifications (according to the algorithm used) 

within which the optimal samples will be chosen and error tolerances for 

the solver of differential equations system if used.  

 

The optimised design and the associated criterion.  

For the simplex algorithm, the number of iterations performed and the 

number of function evaluations, the status of the convergence (false or 

achieved) are reported  

For the Fedorov-Wynn algorithm for optimal population design, the 

optimal group structure with the proportion of subjects and the equivalence 

in number are then reported. The best one group protocol is also always 

reported with associated criterion.  

When optimising a Bayesian or an individual design, the resulted 

design correspond to the best one group protocol. 

 

The population or individual or Bayesian Fisher information matrix, a 

dim*dim symmetric matrix where dim is the total number of population 

parameters to be estimated, the number of individual parametres + the 

number of the error model parameters or only the number of individual 

parameters respectively. The name of the file where is possibly saved the 

Fisher information matrix is given. 

 

The value of each parameter with the expected standard error 

(StdError) and relative standard error (RSE). In case of Bayesian design, 

the associated shrinkages values are also reported. 

 

The value of the determinant of the Fisher information matrix and the 

value of the criterion (determinant^(1/dim)) where dim is defined in  

    

      The eigenvalues of the Fisher information matrix and the correlation 

matrix. 

 

  

 

 

  

1

2

5

4

 
6 

5

3a 

3b 

  7   

  
8   
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PFIM 4.0   

  

Project: Example Optimisation 

  

Date: Thu Jul 31 09:22:17 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

  

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)        1   100 

 

  

Total number of samples: 4 

  

Associated criterion value: 3.5272 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

               times freq Subjects doses 

1 c(0.33, 1.5, 5, 8)    1        1   100 

 

  

Associated criterion: 3.8066 

  

 

  

  

1

2

4

3b 

3a 
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Computation of the Bayesian Fisher information matrix 

 

FIM saved in FIM.txt 

 

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]       [,2]       [,3] 

[1,]  1.590507   2.096455 -0.2426030 

[2,]  2.096455 354.843266  4.4964361 

[3,] -0.242603   4.496436  0.2013882 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta  StdError      RSE   Shrinkage   

ka  2.00 0.9638509 48.19255 %  23.22522 % 

k   0.25 0.0688475 27.53900 %  30.33586 % 

V  15.00 3.1862487 21.24166 %  45.12080 % 

 

  

******************************* DETERMINANT ******************************** 

  

55.15913 

  

******************************** CRITERION ********************************* 

  

3.806617 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     9.552493e-02                 NA 

max     3.549127e+02                 NA 

max/min 3.715393e+03                 NA 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.0000000 -0.4133690  0.5638373 

[2,] -0.4133690  1.0000000 -0.6330761 

[3,]  0.5638373 -0.6330761  1.0000000 

 

 

Figure 2. Example of design optimisation output file 

 

 

Moreover, the PFIM() function returns the following R objects:  

- mfisher: the population or individual or Bayesian Fisher 

information matrix corresponding to the optimised protocole 

- determinant:  the determinant of the Fisher information matrix 

- crit: the value of the criterion 

- se: the vector of the expected standard errors for each parameter 

- cv: the corresponding coefficient of variation, expressed in 

percent (relative standard error) 

- sh: the shrinkage values for each parameter in case of Bayesian 

design 

- EigenValues: the eigenvalues of the Fisher information matrix 

- corr.matrix: the correlation matrix 

  

5

 
6 

   
7   

8 
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6.3 Comments 

 
o It is now possible to visualise the graphs of the model and the 

sensitivity functions without performing evaluation or optimisation (see 

Example Documentation) 

 

o For an infusion model, it is not possible for design evaluation to 

include the time at the end of the infusion when the end of infusion 

parameter is a parameter to be estimated.  

 

o If the bound are not correctly specified according to the number of 

responses in case of analytical form expression, by default bounds are 

initialized to c(0, Inf) but that does not appear on the stdin.r file. 

In case of analytical form defined by R function or of differential 

equation system, the bound is not used. 

 

o If the between-subject variance of a parameter is assumed to be zero, 

enter 0 for this variance in omega: PFIM will remove the corresponding 

row and column in the Fisher information matrix. 

 

o If a parameter is fixed, no variability is assumed and no shrinkage is 

computed for this parameter 

 

o The number of subjects for each elementary design is the same for all 

the response(s) 

 

o Optimisation with the Fedorov-Wynn algorithm can be performed with an 

initial design composed of several groups with different doses or 

initial conditions and with fixed sampling times  

 

o The dimension of the previous Fisher information matrix is the same as 

the current Fisher information matrix. The previous Fisher information 

matrix can be taken into account in evaluation and in optimisation with 

Simplex algorithm or for best one group protocol 

 

o If a design leads to very poor information with a singular population 

Fisher information matrix (det=0), the expected standard errors and the 

RSE are returned as NA. 

 

o Standard error of derived parameters can be computed by the delta method 

available in the R package “car”, using the FIM stored in files or 

directly obtained in R console after running PFIM (see Example 

documentation Section 1.5 for detailed examples) 
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